【題目】已知函數(shù)).

(1)若不等式的解集為,求的取值范圍;

(2)當時,解不等式;

(3)若不等式的解集為,若,求的取值范圍.

【答案】(1);(2).;(3).

【解析】試題分析:(1)對二項式系數(shù)進行討論,可得求出解集即可;(2)分為 , 分別解出3種情形對應的不等式即可;(3)將問題轉化為對任意的,不等式恒成立,利用分離參數(shù)的思想得恒成立,求出其最大值即可.

試題解析:(1)①當時, ,不合題意;

②當時,

,即,

,∴

(2)

①當時,解集為

②當時,

,∴解集為

③當時,

,所以,所以

∴解集為

(3)不等式的解集為,

即對任意的,不等式恒成立,

恒成立,

因為恒成立,所以恒成立,

, ,

所以,

因為,當且僅當時取等號,

所以,當且僅當時取等號,

所以當時, ,

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】1)寫出命題兩個有理數(shù)的和是有理數(shù)的逆命題、否命題、逆否命題;

2)判斷上述四個命題的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點是圓 上的任意一點,點與點的連線段的垂直平分線和相交于點.

(I)求點的軌跡方程;

(II)過坐標原點的直線交軌跡于點, 兩點,直線與坐標軸不重合. 是軌跡上的一點,若的面積是4,試問直線, 的斜率之積是否為定值,若是,求出此定值,否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,定義為兩點

切比雪夫距離,又設點上任意一點,稱的最小值為點

直線切比雪夫距離,記作,給出下列三個命題:

對任意三點、,都有;

已知點和直線,則

定點、,動點滿足),

則點的軌跡與直線為常數(shù))有且僅有2個公共點

其中真命題的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若關于的方程恰有三個不相等的實數(shù)解,則的取值范圍是  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知fx=,gx=x++a,其中a為常數(shù).

1)若gx)≥0的解集為{x|0xx≥3},求a的值;

2)若x1∈(0,+∞),x2[1,2]使fx1)≤gx2)求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】魏晉時期數(shù)學家劉徽在為《九章算術》作注時,提出利用“牟合方蓋”解決球體體積,“牟合方蓋”由完全相同的四個曲面構成,相對的兩個曲面在同一圓柱的側面上,正視圖和側視圖都是圓,每一個水平截面都是正方形,好似兩個扣合(牟合)在一起的方形傘(方蓋).二百多年后,南北朝時期數(shù)學家祖暅在前人研究的基礎上提出了《祖暅原理》:“冪勢既同,則積不容異”.意思是:兩等高立方體,若在每一等高處的截面積都相等,則兩立方體體積相等.如圖有一牟合方蓋,其正視圖與側視圖都是半徑為的圓,正邊形是為體現(xiàn)其直觀性所作的輔助線,根據祖暅原理,該牟合方蓋體積為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C過點,且與圓外切于點,過點作圓C的兩條切線PM,PN,切點為M,N.

(1)求圓C的標準方程;

(2)試問直線MN是否恒過定點?若過定點,請求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,下有七張卡片,現(xiàn)這樣組成一個三位數(shù):甲從這七張卡片中隨機抽出一張,把卡片上的數(shù)字寫在百位,然后把卡片放回;乙再從這七張卡片中隨機抽出一張,把卡片上的數(shù)字寫在十位,然后把卡片放回;丙又從這七張卡片中隨機抽出一張,把卡片上的數(shù)字寫在個位,然后把卡片放回。則這樣組成的三位數(shù)的個數(shù)為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案