f(x)在x=a處可導(dǎo),則
lim
h-0
f(a+3h)-f(a-h)
2h
等于
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:把要求極限的式子變形,轉(zhuǎn)化為函數(shù)在x=a處的導(dǎo)數(shù)得答案.
解答: 解:
lim
h-0
f(a+3h)-f(a-h)
2h

=
lim
h→0
f(a+3h)-f(a)+f(a)-f(a-h)
2h

=
lim
h→0
f(a+3h)-f(a)
2h
-
lim
h→0
f(a-h)-f(a)
2h

=
3
2
lim
h→0
f(a+3h)-f(a)
3h
+
1
2
lim
h→0
f(a-h)-f(a)
-h

=2f′(a).
故答案為:2f′(a).
點(diǎn)評:本題考查了導(dǎo)數(shù)的概念,考查了學(xué)生對導(dǎo)數(shù)概念的理解,考查了靈活變形能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有甲、乙兩城,甲城位于一直線河岸,乙城離岸40km,乙城到河岸的垂足B與甲城相距50km,兩城要在此河邊合舍一個(gè)水廠取水,從水廠到甲城和乙城的水管費(fèi)用分別為每千米500元和我700元,則水廠甲城的距離為
 
千米,才能使水管費(fèi)用最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=ax(a>0且a≠1)在[1,2]上的最大值與最小值之和為6,記f(x)=
ax-1
ax+1

(1)求a的值;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求不等式f(x)>
15
17
的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面是以O(shè)為中心的菱形,PO⊥底面ABCD,PO=
3
,AB=4,∠BAD=
π
3
,M為棱BC上一點(diǎn),且BM=1.
(1)求二面角B-AP-M的平面角的余弦值;
(2)在側(cè)棱PD上確定一點(diǎn)N,使ON∥平面APM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x方程x3+ax2+bx+c=0的三個(gè)根可以作為一橢圓,一雙曲線,一拋物線的離心率,則
b
a
的取值范圍( 。
A、(-2,-
1
2
B、(-2,-1)
C、(-1,-
1
2
D、(-∞,-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
=0,向量
c
滿足(
c
-
a
)•(
c
-
b
)=0,|
a
-
b
|=5,|
a
-
c
|=3,則
a
c
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義
a
*
b
=|a|×|b|sinθ,θ為
a
b
的夾角,已知點(diǎn)A(-3,2),點(diǎn)B(2,3),O是坐標(biāo)原點(diǎn),則
OA
*
OB
等于( 。
A、5B、13C、0D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)h使得對于任意x∈M(M⊆D),有x+h∈M,且f(x+h)≥f(x),則稱f(x)為M上的h高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=(
1
2
x為R上的1高調(diào)函數(shù);
②函數(shù)f(x)=sin2x為R上的π高調(diào)函數(shù);
③若函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞).
④函數(shù)f(x)=1g(|x-2|+1)上的2高調(diào)函數(shù).
其中正確命題的序號是
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
AB
=(6,1),
BC
=(x,y),
CD
=(-2,-3)
(1)若
BC
DA
,求y=f(x)的解析式
(2)在(1)的條件下,若
AC
BD
,求x與y的值以及四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案