19.在幾何體ABCDE中,四邊形ABCD是正方形,CE⊥平面ADE且CE=EF=2,F(xiàn)是線段DE的中點.
(I)求證:平面BCF⊥平面CDE;
(II)求二面角A-BF-E的平面角的正弦值.

分析 (Ⅰ)推導(dǎo)出AD⊥CD,AD⊥CE,從而AD⊥平面CDE,進(jìn)而BC⊥平面CDE,由此能證明平面BCF⊥平面CDE.
(Ⅱ)以D為原點,DA為x軸,DE為y軸,過D作EC的平行線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BF-E的平面角的正弦值.

解答 證明:(Ⅰ)∵四邊形ABCD是正方形,∴AD⊥CD,
∵CE⊥平面ADE,AD?平面ADE,∴AD⊥CE,
∵CD∩CE=C,∴AD⊥平面CDE,
∵BC∥AD,∴BC⊥平面CDE,
∵BC?平面BCF,∴平面BCF⊥平面CDE.
解:(Ⅱ)以D為原點,DA為x軸,DE為y軸,過D作EC的平行線為z軸,
建立空間直角坐標(biāo)系,
則A(2$\sqrt{5}$,0,0),B(2$\sqrt{5}$,4,2),F(xiàn)(0,2,0),E(0,4,0),
$\overrightarrow{BA}$=(0,-4,-2),$\overrightarrow{BF}$=(-2$\sqrt{5}$,-2,-2),$\overrightarrow{BE}$=(-2$\sqrt{5}$,0,-2),
設(shè)平面ABF的法向量$\overrightarrow{n}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BA}=-4b-2c=0}\\{\overrightarrow{n}•\overrightarrow{BF}=-2\sqrt{5}a-2b-2c=0}\end{array}\right.$,取b=1,得$\overrightarrow{n}$=($\frac{\sqrt{5}}{5}$,1,-2),
設(shè)平面BEF的法向量$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BE}=-2\sqrt{5}x-2z=0}\\{\overrightarrow{m}•\overrightarrow{BF}=-2\sqrt{5}x-2y-2z=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,0,-$\sqrt{5}$),
設(shè)二面角A-BF-E的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\frac{11\sqrt{5}}{5}}{\sqrt{\frac{26}{5}}•\sqrt{6}}$=$\frac{11}{2\sqrt{39}}$,
∴sinθ=$\sqrt{1-(\frac{11}{2\sqrt{39}})^{2}}$=$\frac{\sqrt{1365}}{78}$.
二面角A-BF-E的平面角的正弦值為$\frac{\sqrt{1365}}{78}$.

點評 本題考查面面垂直的證明,考查二面角的正弦值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)離散型隨機(jī)變量X的分布列為:
X1234
P$\frac{1}{6}$$\frac{1}{3}$$\frac{1}{6}$p
則p的值為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x3+$\frac{5}{2}$x2+ax+b(a,b為常數(shù)),其圖象是曲線C.
(1)當(dāng)a=-2時,求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若存在唯一的實數(shù)x0,使得f(x0)=x0與f′(x0)=0同時成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)=$\frac{{{e^{ax}}}}{x}$,(e為自然對數(shù)的底數(shù)).
(Ⅰ)若f(x)在(0,4]上是減函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時,求函數(shù)f(x)在[m,m+2](m>0)上的最小值;
(Ⅲ)求證:$\sum_{i=1}^n{\frac{1}{{i•{e^i}}}}<\frac{7}{4e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x(ax+b)-lnx(a≥0,b∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)若b=a-2,且不存在x0∈(0,+∞),使得f(x0)≤0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左焦點為F(-1,0),O為坐標(biāo)原點,點$G({1,\frac{{\sqrt{2}}}{2}})$在橢圓上,過點F的直線l交橢圓于不同的兩點 A、B.
(1)求橢圓C的方程;
(2)求弦AB的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下面幾種推理是合情推理的是( 。
①由圓的性質(zhì)類比出球的有關(guān)性質(zhì);
②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是180°歸納出所有三角形的內(nèi)角和都是180°;
③三角形內(nèi)角和是180°,四邊形內(nèi)角和是360°,五邊形內(nèi)角和是540°,由此得凸n邊形內(nèi)角和是(n-2)•180°;
④所有自然數(shù)都是整數(shù),4是自然數(shù),所以4是整數(shù).
A.①④B.②③C.①②③D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知正四棱錐P-ABCD,底面正方形的邊長是2,高與斜高的夾角為30°,那么正四棱錐的側(cè)面積為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)F1是橢圓${x^2}+\frac{y^2}{4}=1$的下焦點,O為坐標(biāo)原點,點P在橢圓上,則$\overrightarrow{P{F_1}}•\overrightarrow{PO}$的最大值為(  )
A.$4+2\sqrt{3}$B.$4-2\sqrt{3}$C.$\sqrt{2}-1$D.$\sqrt{3}+1$

查看答案和解析>>

同步練習(xí)冊答案