(2012•東莞二模)在極坐標(biāo)系中,點(diǎn)A(2,
π
2
)
關(guān)于直線l:ρcosθ=1的對(duì)稱點(diǎn)的一個(gè)極坐標(biāo)為
(2
2
π
4
)
(2
2
,
π
4
)
分析:在直角坐標(biāo)系中,求出A的坐標(biāo)以及A關(guān)于直線l的對(duì)稱點(diǎn)B(2,2),由|OB|=2
2
,OB直線的傾斜角等于
π
4
,且點(diǎn)B 在第一象限,寫出B的極坐標(biāo),即為所求.
解答:解:在直角坐標(biāo)系中,A( 0,2),直線l:x=1,A關(guān)于 直線l的對(duì)稱點(diǎn)B(2,2).
由于|OB|=2
2
,OB直線的傾斜角等于
π
4
,且點(diǎn)B 在第一象限,
故B的極坐標(biāo)為 (2
2
π
4
)
,
故答案為  (2
2
,
π
4
)
點(diǎn)評(píng):本題主要考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,用點(diǎn)的極坐標(biāo)刻畫點(diǎn)的位置,求出點(diǎn)B的直角坐標(biāo),是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東莞二模)附加題:設(shè)函數(shù)f(x)=
1
4
x2+
1
2
x-
3
4
,對(duì)于正整數(shù)列{an},其前n項(xiàng)和為Sn,且Sn=f(an),n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在等比數(shù)列{bn},使得a1b1+a2b2+…+anbn=2n+1(2n-1)+2對(duì)一切正整數(shù)n都成立?若存在,請(qǐng)求出數(shù)列{bn}的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東莞二模)甲、乙兩名運(yùn)動(dòng)員的5次測(cè)試成績(jī)?nèi)鐖D所示,設(shè)s1,s2分別表示甲、乙兩名運(yùn)動(dòng)員測(cè)試成績(jī)的標(biāo)準(zhǔn)差,
.
x1
,
.
x2
分別表示甲、乙兩名運(yùn)動(dòng)員測(cè)試成績(jī)的平均數(shù),則有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東莞二模)對(duì)于函數(shù)
①f(x)=|x+2|,
②f(x)=(x-2)2
③f(x)=cos(x-2),
判斷如下兩個(gè)命題的真假:命題甲:f(x+2)是偶函數(shù);命題乙:f(x)在(-∞,2)上是減函數(shù),在(2,+∞)上是增函數(shù);能使命題甲、乙均為真的所有函數(shù)的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東莞二模)設(shè)D是不等式組
x+2y≤10
2x+y≥3
0≤x≤4
y≥1
表示的平面區(qū)域,則D中的點(diǎn)P(x,y)到直線x+y=10距離的最大值是
4
2
4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東莞二模)設(shè)復(fù)數(shù)z1=1+i,z2=2+bi,若z1•z2為實(shí)數(shù),則b=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案