棱長(zhǎng)為1的正方體的8個(gè)頂點(diǎn)都在球的表面上,分別
是棱,的中點(diǎn),則直線被球截得的線段長(zhǎng)為(   )
A.B.C.D.
D
正方體對(duì)角線為球直徑,所以,在過點(diǎn)E、F、O的球的大圓中,
由已知得d=,,所以EF=2r=。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖所示的幾何體中.EA⊥平面ABC,

DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE=2,M是AB的中點(diǎn).
(Ⅰ)求證:CM⊥EM ;
(Ⅱ)求多面體ABCDE的體積
(Ⅲ)求直線DE與平面EMC所成角的正切值.             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


用一個(gè)平面截半徑為25cm的球,截面面積是225πcm2,則球心到截面的距離為多少??

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若一個(gè)底面邊長(zhǎng)為,棱長(zhǎng)為的正六棱柱的所有頂點(diǎn)都在一個(gè)平面上,則此球的體積為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)長(zhǎng)方體的各頂點(diǎn)均在同一球面上,且一個(gè)頂點(diǎn)上的三條棱的長(zhǎng)分別為則此球的表面積為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩個(gè)不同的平面a、b和兩條不重合的直線m、n,有下列四個(gè)命題  
①若m//n,m^a,則n^a;         ②若m^a,m^b,則a//b;
③若m^a,m//nnÌb,則a^b;   ④若m//a,aÇb=n,則m//n.
其中正確命題的個(gè)數(shù)是       
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面α⊥平面β,交線為ABC,D,,EBC的中點(diǎn),ACBD,BD=8.

①求證:BD⊥平面;
②求證:平面AED⊥平面BCD;
③求二面角BACD的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,在棱長(zhǎng)為1的正方體中,
(I)在側(cè)棱上是否存在一個(gè)點(diǎn)P,使得直線與平面所成角的正切值為
;(Ⅱ)若P是側(cè)棱上一動(dòng)點(diǎn),在線段上是否存在一個(gè)定點(diǎn),使得在平面上的射影垂直于.并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(12分)如圖,直三棱柱ABC—A1B1C1的底面是等腰直角三角形,∠A1C1B1=90°,A1C1=1,AA1=,D是線段A1B的中點(diǎn).                                       

(1)證明:面⊥平面A1B1BA;
(2)證明:;
(3)求棱柱ABC—A1B1C1被平面分成兩部分的體積比.

查看答案和解析>>

同步練習(xí)冊(cè)答案