設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右兩個焦點.
(1)若橢圓C上的點A(1,
3
2
)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標(biāo);
(2)設(shè)點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程.
分析:(1)把已知點的坐標(biāo)代入橢圓方程,再由橢圓的定義知2a=4,從而求出橢圓的方程,由橢圓的方程求出焦點坐標(biāo).
(2)設(shè)F1K的中點Q(x,y),則由中點坐標(biāo)公式得點K(2x+1,2y),把K的坐標(biāo)代入橢圓方程,化簡即得線段KF1的中點Q的軌跡方程.
解答:解:(1)橢圓C的焦點在x軸上,由橢圓上的點A到F1、F2兩點的距離之和是4,得2a=4,即a=2.…(2分)
又點A(1,
3
2
)在橢圓上,因此
1
22
+
(
3
2
)
2
b2
=1得b2=3,于是c2=1.…(4分)
所以橢圓C的方程為
x2
4
+
y2
3
=1,…(5分)
焦點F1(-1,0),F(xiàn)2(1,0).…(7分)
(2)設(shè)橢圓C上的動點為K(x1,y1),線段F1K的中點Q(x,y)滿足:x=
-1+x1
2
,y=
y1
2
,即x1=2x+1,y1=2y.…(11分)
因此
(2x+1)2
4
+
(2y)2
3
=1.即(x+
1
2
)2+
4y2
3
=1
為所求的軌跡方程.…(15分)
點評:本題考查橢圓的簡單性質(zhì)、線段的中點公式,以及用代入法求軌跡方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別為橢C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右兩個焦點,橢圓C上的點A(1,
3
2
)
到兩點的距離之和等于4.
(Ⅰ)求橢圓C的方程和焦點坐標(biāo);
(Ⅱ)設(shè)點P是(Ⅰ)中所得橢圓上的動點Q(0.
1
2
)
求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)F1,F(xiàn)2分別為橢C:數(shù)學(xué)公式(a>b>0)的左、右兩個焦點,橢圓C上的點數(shù)學(xué)公式到兩點的距離之和等于4.
(Ⅰ)求橢圓C的方程和焦點坐標(biāo);
(Ⅱ)設(shè)點P是(Ⅰ)中所得橢圓上的動點數(shù)學(xué)公式求|PQ|的最大值.

查看答案和解析>>

同步練習(xí)冊答案