①.已知函數(shù)
則
的解為
②. 在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),若以
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,則曲線
的極坐標(biāo)方程為
,則直線
被曲線
所截得的弦長為
(1)t>2 (2)
試題分析:①通過分類討論,將f(t)中的絕對值符號去掉,解不等式組即可;
②將直線l的參數(shù)方程與圓的極坐標(biāo)方程轉(zhuǎn)化為普通方程,由弦長公式即可求得直線l被曲線C所截得的弦長.
點(diǎn)評:本題考查絕對值不等式的解法,考查簡單曲線的極坐標(biāo)方程與直線的參數(shù)方程,考查轉(zhuǎn)化思想與運(yùn)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
曲線
的參數(shù)方程為
(
為參數(shù)),將曲線
上所有點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)伸長為原來的
倍,得到曲線
.
(Ⅰ)求曲線
的普通方程;
(Ⅱ)已知點(diǎn)
,曲線
與
軸負(fù)半軸交于點(diǎn)
,
為曲線
上任意一點(diǎn), 求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
(坐標(biāo)系與參數(shù)方程選做題)若直線的極坐標(biāo)方程為
,曲線
:
上的點(diǎn)到直線的距離為
,則
的最大值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在極坐標(biāo)系
中,求曲線
與
的交點(diǎn)
的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若
分別是曲線
和
上的動(dòng)點(diǎn),則
兩點(diǎn)間的距離的最小值是
;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在極坐標(biāo)系中,點(diǎn)
與點(diǎn)
關(guān)于直線
對稱
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知圓錐曲線C:
為參數(shù))和定點(diǎn)
,
是此圓錐曲線的左、右焦點(diǎn)。
(1)以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,求直線
的極坐標(biāo)方程;
(2)經(jīng)過點(diǎn)
,且與直線
垂直的直線
交此圓錐曲線于
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在極坐標(biāo)系中(0
﹤
),曲線
與
的交點(diǎn)的極坐標(biāo)為_______________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在極坐標(biāo)系中,曲線
,過點(diǎn)A(5,α)(α為銳角且
)作平行于
的直線
,且
與曲線L分別交于B,C兩點(diǎn).
(Ⅰ)以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸,取與極坐標(biāo)相同單位長度,建立平面直角坐標(biāo)系,寫出曲線L和直線
的普通方程;
(Ⅱ)求|BC|的長.
查看答案和解析>>