7.已知直線(xiàn)l⊥平面α,直線(xiàn)m?平面β,則l⊥m的一個(gè)充分不必要條件是( 。
A.α⊥βB.α∥βC.m⊥αD.l∥β

分析 當(dāng)α∥β時(shí),由線(xiàn)面垂直的性質(zhì)可得l⊥m,故必要性成立;當(dāng) l⊥m 時(shí),不一定有α∥β,故充分性不成立.

解答 解:若直線(xiàn)l⊥平面α,直線(xiàn)m?平面β,
若α∥β,則l⊥m,
反之,不成立,
故選:C.

點(diǎn)評(píng) 本題考查充分條件、必要條件的定義,兩個(gè)平面平行的判定,證明充分性不成立是解題的難點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某同學(xué)參加科普知識(shí)競(jìng)賽,需要回答3個(gè)問(wèn)題.競(jìng)賽規(guī)則規(guī)定:每題回答正確得30分,不答或回答不正確得-30分.假設(shè)這名同學(xué)每題回答正確的概率為0.8,且各題回答正確與否相互之間沒(méi)有影響,
(1)求這名同學(xué)回答這3個(gè)問(wèn)題的總得分X的概率分布列;
(2)若不少于30分就算入圍,求這名同學(xué)入圍的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知向量$\overrightarrow a=(1,1,x)$,$\overrightarrow b=(1,2,1)$,$\overrightarrow c=(1,2,3)$滿(mǎn)足$(\overrightarrow c-\overrightarrow a)•\overrightarrow b=-1$,則x=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知[x]為不超過(guò)實(shí)數(shù)x的最大整數(shù),g(x)=[x]是取整函數(shù),x0是函數(shù)$f(x)={e^x}-\frac{2}{x}$的零點(diǎn),則g(x0)等于( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=ax2-2ax+lnx+a+1.
(1)當(dāng)$a=-\frac{1}{4}$時(shí),求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在區(qū)間[2,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)x∈[1,+∞]時(shí),函數(shù)y=f(x)圖象上的點(diǎn)都在$\begin{array}{l}\left\{\begin{array}{l}x≥1\\ y-x≤0\end{array}\right.\end{array}$所表示的平面區(qū)域內(nèi),求數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.直線(xiàn)l過(guò)點(diǎn)(1,2),且與直線(xiàn)x+2y=0垂直,則直線(xiàn)l的方程為2x-y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=2xf′(e)+lnx,則f(e)=(  )
A.-eB.eC.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知圓x2+(y-4)2=4的圓心與點(diǎn)P(2,0)關(guān)于直線(xiàn)l對(duì)稱(chēng),則直線(xiàn)l的方程為( 。
A.x-y=0B.x-2y+3=0C.x+y-3=0D.x-2y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.曲線(xiàn)y=xex在點(diǎn)(1,1)處的瞬時(shí)變化率等于( 。
A.2eB.eC.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案