【題目】已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.直線與橢圓交于不同兩點(diǎn)(都在軸上方),且.
(1)求橢圓的方程;
(2)當(dāng)為橢圓與軸正半軸的交點(diǎn)時(shí),求直線方程;
(3)對(duì)于動(dòng)直線,是否存在一個(gè)定點(diǎn),無論如何變化,直線總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1) (2) (3)直線總經(jīng)過定點(diǎn)
【解析】試題分析:(1) 設(shè),用坐標(biāo)表示條件列出方程化簡(jiǎn)整理可得橢圓的標(biāo)準(zhǔn)方程;(2)由(1)可知, ,即可得,由得,寫出直線的方程與橢圓方程聯(lián)立,求出點(diǎn)的坐標(biāo),由兩點(diǎn)式求直線的方程即可;(3)由,得,設(shè)直線方程為,與橢圓方程聯(lián)立得,由根與系數(shù)關(guān)系計(jì)算得,從而得到直線方程為,從而得到直線過定點(diǎn).
試題解析: (1)設(shè),則, ,………………1分
∴,化簡(jiǎn),得,∴橢圓的方程為.………………3分
(2), ,∴,………………4分
又∵,∴, .
代入解,得(舍)∴,………………6分
,∴.即直線方程為.………………7分
(3)∵,∴.
設(shè),,直線方程為.代直線方程入,得
.………………9分
∴,,∴=
,
∴,……………11分
∴直線方程為,
∴直線總經(jīng)過定點(diǎn).………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,為,軸上兩個(gè)動(dòng)點(diǎn),點(diǎn)在直線上,且滿足,.
(1)求點(diǎn)的軌跡方程;
(2)記點(diǎn)的軌跡為曲線,為曲線與正半軸的交點(diǎn),、為曲線上與不重合的兩點(diǎn),且直線與直線的斜率之積為,求證直線經(jīng)過一個(gè)定點(diǎn),并求出該定點(diǎn)坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC在內(nèi)角A、B、C的對(duì)邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的部分圖象如圖所示,則函數(shù)圖象的一個(gè)對(duì)稱中心可能為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國(guó)好聲音()》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強(qiáng)力打造的大型勵(lì)志專業(yè)音樂評(píng)論節(jié)目,于2012年7月13日在浙江衛(wèi)視播出.每期節(jié)目有四位導(dǎo)師參加.導(dǎo)師背對(duì)歌手,當(dāng)每位參賽選手演唱完之前有導(dǎo)師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的導(dǎo)師的團(tuán)隊(duì)中接受指導(dǎo)訓(xùn)練.已知某期《中國(guó)好聲音》中,6位選手唱完后,四位導(dǎo)師為其轉(zhuǎn)身的情況如下表所示:
導(dǎo)師轉(zhuǎn)身人數(shù)(人) | 4 | 3 | 2 | 1 |
獲得相應(yīng)導(dǎo)師轉(zhuǎn)身的選手人數(shù)(人) | 1 | 2 | 2 | 1 |
現(xiàn)從這6位選手中隨機(jī)抽取兩人考查他們演唱完后導(dǎo)師的轉(zhuǎn)身情況.
(1)請(qǐng)列出所有的基本事件;
(2)求兩人中恰好其中一位為其轉(zhuǎn)身的導(dǎo)師不少于3人,而另一人為其轉(zhuǎn)身的導(dǎo)師不多于2人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)與點(diǎn)的距離和它到直線:的距離的比是.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)已知定點(diǎn),若,是軌跡上兩個(gè)不同動(dòng)點(diǎn),直線,的斜率分別為,,且,試判斷直線的斜率是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解高一實(shí)驗(yàn)班的數(shù)學(xué)成績(jī),采用抽樣調(diào)查的方式,獲取了位學(xué)生在第一學(xué)期末的數(shù)學(xué)成績(jī)數(shù)據(jù),樣本統(tǒng)計(jì)結(jié)果如下表:
分組 | 頻數(shù) | 頻率 |
合計(jì) |
(1)求的值和實(shí)驗(yàn)班數(shù)學(xué)平均分的估計(jì)值;
(2)如果用分層抽樣的方法從數(shù)學(xué)成績(jī)小于分的學(xué)生中抽取名學(xué)生,再?gòu)倪@名學(xué)生中選人,求至少有一個(gè)學(xué)生的數(shù)學(xué)成績(jī)是在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為,長(zhǎng)半軸長(zhǎng)為短軸長(zhǎng)的b倍,A,B分別為橢圓C的上、下頂點(diǎn),點(diǎn).
求橢圓C的方程;
若直線MA,MB與橢圓C的另一交點(diǎn)分別為P,Q,證明:直線PQ過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點(diǎn)P為圓心的圓經(jīng)過點(diǎn)A(-1,0)和B(3,4),線段AB的垂直平分線交圓P于點(diǎn)C和D,且|CD|=.
(1)求直線CD的方程;
(2)求圓P的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com