【題目】定義在上的函數(shù)同時滿足下列兩個條件:①對任意的恒有成立;②當時,.記函數(shù),若函數(shù)恰有兩個零點,則實數(shù)的取值范圍是( )
A.B.C.D.
【答案】D
【解析】
根據(jù)題中的條件得到函數(shù)的解析式為:f(x)=﹣x+2b,x∈(b,2b],又因為f(x)=k(x﹣1)的函數(shù)圖象是過定點(1,0)的直線,再結(jié)合函數(shù)的圖象根據(jù)題意求出參數(shù)的范圍即可.
解:∵對任意的x∈(1,+∞)恒有f(2x)=2f(x)成立,且當x∈(1,2]時,f(x)=2﹣x,
∴f(x)=﹣x+2b,x∈(b,2b].
由題意得f(x)=k(x﹣1)的函數(shù)圖象是過定點(1,0)的直線,
如圖所示紅色的直線與線段AB相交即可(可以與B點重合但不能與A點重合),
∴可得k的范圍為:,
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,底面是直角梯形,其中,,,,為棱上的點,且.
(1)求證:平面;
(2)求二面角的余弦值;
(3)設(shè)為棱上的點(不與,重合),且直線與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,,給出以下四種排序:①M,N,T;②M,T,N;③N,T,M;④T,N,M.從中任選一個,補充在下面的問題中,解答相應(yīng)的問題.
已知等比數(shù)列中的各項都為正數(shù),,且__________依次成等差數(shù)列.
(Ⅰ)求的通項公式;
(Ⅱ)設(shè)數(shù)列的前n項和為,求滿足的最小正整數(shù)n.
注:若選擇多種排序分別解答,按第一個解答計分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,,四邊形和四邊形是兩個全等的等腰梯形.
(1)求證:四邊形為矩形;
(2)若平面平面,,,,求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某疫苗進行安全性臨床試驗.該疫苗安全性的一個重要指標是:注射疫苗后人體血液中的高鐵血紅蛋白(MetHb)的含量(以下簡稱為“M含量”)不超過1%,則為陰性,認為受試者沒有出現(xiàn)高鐵血紅蛋白血癥(簡稱血癥);若M含量超過1%,則為陽性,認為受試者出現(xiàn)血癥.若一批受試者的M含量平均數(shù)不超過0.65%,且出現(xiàn)血癥的被測試者的比例不超過5%,則認為該疫苗在M含量指標上是“安全的”;否則為“不安全”.現(xiàn)有男、女志愿者各200名接受了該疫苗注射,按照性別分層,隨機抽取50名志愿者進行M含量的檢測,其中女性志愿者被檢測出陽性的恰好1人.經(jīng)數(shù)據(jù)整理,制得頻率分布直方圖如下.(注:在頻率分布直方圖中,同一組數(shù)據(jù)用該區(qū)間的中點值作代表.)
(1)請說明該疫苗在M含量指標上的安全性;
(2)請利用樣本估計總體的思想,完成這400名志愿者的列聯(lián)表,并判斷是否有超過99%的把握認為,注射疫苗后,高鐵血紅蛋白血癥與性別有關(guān)?
男 | 女 | |
陽性 | ||
陰性 |
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標系xOy中,曲線C的參數(shù)方程為(t為參數(shù)).以原點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos().
(1)求曲線C和直線l的直角坐標方程;
(2)若直線l交曲線C于A,B兩點,交x軸于點P,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c為正實數(shù),且滿足a+b+c=1.證明:
(1)|a|+|b+c﹣1|;
(2)(a3+b3+c3)()≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】攜號轉(zhuǎn)網(wǎng),也稱作號碼攜帶、移機不改號,即無需改變自己的手機號碼,就能轉(zhuǎn)換運營商,并享受其提供的各種服務(wù).2019年11月27日,工信部宣布攜號轉(zhuǎn)網(wǎng)在全國范圍正式啟動.某運營商為提質(zhì)量?蛻,從運營系統(tǒng)中選出300名客戶,對業(yè)務(wù)水平和服務(wù)水平的評價進行統(tǒng)計,其中業(yè)務(wù)水平的滿意率為,服務(wù)水平的滿意率為,對業(yè)務(wù)水平和服務(wù)水平都滿意的客戶有180人.
(Ⅰ)完成下面列聯(lián)表,并分析是否有的把握認為業(yè)務(wù)水平與服務(wù)水平有關(guān);
對服務(wù)水平滿意人數(shù) | 對服務(wù)水平不滿意人數(shù) | 合計 | |
對業(yè)務(wù)水平滿意人數(shù) | |||
對業(yè)務(wù)水平不滿意人數(shù) | |||
合計 |
(Ⅱ)為進一步提高服務(wù)質(zhì)量,在選出的對服務(wù)水平不滿意的客戶中,抽取2名征求改進意見,用表示對業(yè)務(wù)水平不滿意的人數(shù),求的分布列與期望;
(Ⅲ)若用頻率代替概率,假定在業(yè)務(wù)服務(wù)協(xié)議終止時,對業(yè)務(wù)水平和服務(wù)水平兩項都滿意的客戶流失率為,只對其中一項不滿意的客戶流失率為,對兩項都不滿意的客戶流失率為,從該運營系統(tǒng)中任選4名客戶,則在業(yè)務(wù)服務(wù)協(xié)議終止時至少有2名客戶流失的概率為多少?
附:,.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,四點,,,中恰有三個點在橢圓C上,左、右焦點分別為F1、F2.
(1)求橢圓C的方程;
(2)過左焦點F1且不平行坐標軸的直線l交橢圓于P、Q兩點,若PQ的中點為N,O為原點,直線ON交直線x=﹣3于點M,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com