7.設(shè)f(x)是定義在R上的函數(shù),對(duì)任意x,y∈R,恒有f(x+y)=f(x)+f(y)
(1)求f(0)的值;
(2)求證:f(x)為奇函數(shù);
(3)若函數(shù)f(x)是R上的單調(diào)遞增的,已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范圍.

分析 (1)令x=y=0可得出答案;
(2)令y=-x可得出答案;
(3)根據(jù)函數(shù)單調(diào)性列方程求出a的范圍.

解答 解:(1)令x=y=0,則f(0)=2f(0),
∴f(0)=0.
(2)令y=-x,則f(x)+f(-x)=f(0)=0,
∴f(x)是奇函數(shù).
(3)∵f(1)=1,∴f(2)=2f(1)=2,
∴f(2a)>f(a-1)+2=f(a-1)+f(2)=f(a+1),
∵函數(shù)f(x)在R上的單調(diào)遞增,
∴2a>a+1,
∴a>1.

點(diǎn)評(píng) 本題考查了抽象函數(shù)的性質(zhì)與應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知角α終邊上有一點(diǎn)$P(cos\frac{10π}{3},sin(-\frac{11π}{6}))$,則tanα=( 。
A.$-\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.A是圓上固定的一定點(diǎn),在圓上其他位置任取一點(diǎn)B,連接A、B兩點(diǎn)得弦AB,則弦AB的長(zhǎng)度大于半徑長(zhǎng)度的概率為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù) y=tan( 3x+$\frac{π}{3}$ ) 的定義域?yàn)?\{x|x≠\frac{kπ}{3}+\frac{π}{18}\}(k∈Z)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知f(x)是定義在R上的偶函數(shù),且f(3-x)=f(x),若f(2)=0,則方程f(x)=0在區(qū)間(0,6)內(nèi)解的個(gè)數(shù)的最小值是( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q的充分不必要條件,求實(shí)數(shù)的取值范圍;
(2)若m=5,“p∧q”為真命題,“p∨q”為假命題,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某大學(xué)餐飲中心為了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如表所示:
喜歡甜品不喜歡甜品合計(jì)
南方學(xué)生602080
北方學(xué)生101020
合計(jì)7030100
(Ⅰ)根據(jù)表中數(shù)據(jù),問(wèn)是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(Ⅱ)已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取2人,求至多有1人喜歡甜品的概率.
P(χ2≥x00.1000.0500.010
x02.7063.8416.635
附:x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某工廠2萬(wàn)元設(shè)計(jì)了某款式的服裝,根據(jù)經(jīng)驗(yàn),每生產(chǎn)1百套該款式服裝的成本為1萬(wàn)元,每生產(chǎn)x(百套)的銷(xiāo)售額(單位:萬(wàn)元)P(x)=$\left\{\begin{array}{l}{-0.4{x}^{2}+4.2x-0.8,0<x≤5}\\{14.7-\frac{9}{x-3},x>5}\end{array}\right.$.
(1)若生產(chǎn)6百套此款服裝,求該廠獲得的利潤(rùn);
(2)該廠至少生產(chǎn)多少套此款式服裝才可以不虧本?
(3)試確定該廠生產(chǎn)多少套此款式服裝可使利潤(rùn)最大,并求最大利潤(rùn).(注:利潤(rùn)=銷(xiāo)售額-成本,其中成本=設(shè)計(jì)費(fèi)+生產(chǎn)成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=|2x-1|.
(Ⅰ)求不等式f(x)<|x-1|的解集;
(Ⅱ)若函數(shù)g(x)=f(x)+f(x-1)的最小值為a,且m+n=a(m>0,n>0),求$\frac{{m}^{2}+2}{m}$+$\frac{{n}^{2}+1}{n}$的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案