11.在數(shù)列{an}中,若a2n=2a2n-2+1,a16=127,則a2的值為( 。
A.-1B.0C.2D.8

分析 由已知數(shù)列遞推式可得,數(shù)列{a2n+1}是以a2+1為首項(xiàng),以2為公比的等比數(shù)列,寫出等比數(shù)列的通項(xiàng)公式,代入已知條件求得a2的值.

解答 解:由a2n=2a2n-2+1,得a2n+1=2(a2n-2+1),
即$\frac{{a}_{2n}+1}{{a}_{2n-2}+1}=2$,
∴數(shù)列{a2n+1}是以a2+1為首項(xiàng),以2為公比的等比數(shù)列,
則${a}_{16}+1=({a}_{2}+1)•{2}^{7}$,即$({a}_{2}+1)=\frac{128}{{2}^{7}}=1$,
∴a2=0.
故選:B.

點(diǎn)評 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,訓(xùn)練了等比數(shù)列的通項(xiàng)公式,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知p:方程x2+mx+1=0有兩個不相等的實(shí)根;q:不等式x+$\frac{m}{x}$-2>0在x∈[2,+∞)上恒成立,若¬p為真命題,p∧q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在邊長為2的等邊三角形△ABC中,點(diǎn)M在邊AB上,且滿足$\overrightarrow{BM}$=3$\overrightarrow{MA}$,則$\overrightarrow{CM}$•$\overrightarrow{CB}$=( 。
A.$\frac{5}{2}$B.$\frac{8}{3}$C.$\frac{7}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)x、y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≥0}\\{3x-y-a≤0}\end{array}\right.$若目標(biāo)函數(shù)z=x+y的最小值為-$\frac{2}{5}$,則實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在斜四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長為2$\sqrt{3}$的菱形,且∠BAD=$\frac{π}{3}$,若∠AA1C=$\frac{π}{2}$,且A1在底面ABCD上射影為△ABD的重心G.
(1)求證:平面ACC1A1⊥平面BDD1B1;
(2)求直線CC1與平面A1BC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點(diǎn)坐標(biāo)為F($\sqrt{3}$,0),且過點(diǎn)(-$\sqrt{3}$,$\frac{1}{2}$).
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線l與以原點(diǎn)O為圓心,OF為半徑的圓相切,交橢圓C于不同的兩點(diǎn)A,B,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.集合A={0,2,3},B={x|y=3x-x0},則A∩B=( 。
A.{0}B.{8,26}C.{8}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.拋擲一枚骰子一次,出現(xiàn)“點(diǎn)數(shù)不小于5”的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某校在半期考試中要考察六個學(xué)科,已知語文必須安排在首場,且數(shù)學(xué)與英語不能相鄰,則這六個學(xué)科總共有( 。┓N不同的考試順序.
A.36B.48C.72D.112

查看答案和解析>>

同步練習(xí)冊答案