已知定義在R上的奇函數(shù)f(x),當x>0時f(x)=2x+x,則當x≤0時f(x)的表達式為________.


分析:設x<0,則-x>0,適合x>0時,f(x)=2x+x,求得f(-x),再由奇函數(shù)求得f(x),利用奇函數(shù)的性質求解f(0),即可
解答:設x<0,則-x>0,
∴f(-x)=2-x-x,
∵f(x)為定義在R上的奇函數(shù)
∴f(x)=-f(-x)=-2-x+x
∵f(-0)=f(0)
∴f(0)=0
故答案為:
點評:本題考查函數(shù)奇偶性 函數(shù)解析式的求解中的應用,把要求區(qū)間上的問題轉化到已知區(qū)間上求解,是解題的關鍵,體現(xiàn)了轉化的數(shù)學思想方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知定義在R上的單調遞增奇函數(shù)以f(x),若當0≤θ≤
π2
時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x).當x<0時,f(x)=x2+2x.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)問:是否存在實數(shù)a,b(a≠b),使f(x)在x∈[a,b]時,函數(shù)值的集合為[
1
b
,
1
a
]
?若存在,求出a,b;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:大連二十三中學2011學年度高二年級期末測試試卷數(shù)學(理) 題型:選擇題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,2]上是增函

數(shù),則(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆浙江省高二下學期期末考試理科數(shù)學試卷 題型:選擇題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,1]上是增函

數(shù),若方程在區(qū)間上有四個不同的根,則

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義在R上的單調遞增奇函數(shù)以f(x),若當0≤θ≤數(shù)學公式時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案