如圖,四邊形為邊長(zhǎng)為a的正方形,以D為圓心,DA為半徑的圓弧與以BC為直徑的圓O交于F,連接CF并延長(zhǎng)交AB于點(diǎn)E.

(1).求證:E為AB的中點(diǎn);
(2).求線段FB的長(zhǎng).

(1)證明過(guò)程詳見(jiàn)解析;(2).

解析試題分析:本題主要考查切割線定理、圓的幾何性質(zhì)等基礎(chǔ)知識(shí),意在考查考生的推理論證能力、數(shù)形結(jié)合能力.第一問(wèn),利用圓D、圓O的切線EA、EB,利用切割線定理,得到EA和EB的關(guān)系,解出EA=EB,所以E為AB的中點(diǎn);第二問(wèn),由于BC為圓O的直徑,得,用不同的方法求三角形BEC的面積,列成等式,得出BF的長(zhǎng).
試題解析:(1)由題意知,與圓和圓相切,切點(diǎn)分別為,
由切割線定理有:所以,即的中點(diǎn).
5分
(2)由為圓的直徑,易得,
,
.   10分
考點(diǎn):切割線定理、圓的幾何性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,P是O外一點(diǎn),PA是切線,A為切點(diǎn),割線PBC與O相交于點(diǎn)B,C,PC=2PA,D為PC的中點(diǎn),AD的延長(zhǎng)線交O于點(diǎn)E。

證明:(1)BE=EC;
(2)ADDE=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,⊙為四邊形的外接圓,且,延長(zhǎng)線上一點(diǎn),直線與圓相切.

求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,PA為⊙O的切線,A為切點(diǎn),PBC是過(guò)點(diǎn)O的割線,PA=10,PB=5。

求:(1)⊙O的半徑;
(2)s1n∠BAP的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,為圓的切線,為切點(diǎn),,的角平分線與和圓分別交于點(diǎn).

(1)求證(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,AB為⊙O的直徑,直線CD與⊙O相切于E,AD垂直CDD,BC垂直CDC,EF垂直ABF,連接AEBE.證明:
 
(1)∠FEB=∠CEB;
(2)EF2AD·BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,AB是⊙O的直徑,弦AC=3 cm,BC=4 cm,CD⊥AB,垂足為D,求AD、BD和CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,弦AB與CD相交于⊙O內(nèi)一點(diǎn)E,過(guò)E作BC的平行線與AD的延長(zhǎng)線相交于點(diǎn)P.已知PD=2DA=2,求PE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,梯形ABCD中,AD∥BC,EF是中位線,BD交EF于P,已知EP∶PF=1∶2,AD=7cm,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案