分析 由已知求得cosα,再由二倍角公式求得sin2α,cos2α.
(1)直接展開兩角和的余弦求得cos(α+\frac{π}{3})的值;
(2)展開兩角差的正弦求得sin(\frac{3π}{4}-2α)的值.
解答 解:∵sinα=\frac{2\sqrt{5}}{5},α∈(\frac{π}{2},π),∴cosα=-\sqrt{1-si{n}^{2}α}=-\sqrt{1-(\frac{2\sqrt{5}}{5})^{2}}=-\frac{\sqrt{5}}{5}.
(1)cos(α+\frac{π}{3})=cosαcos\frac{π}{3}-sinαsin\frac{π}{3}=-\frac{\sqrt{5}}{5}×\frac{1}{2}-\frac{2\sqrt{5}}{5}×\frac{\sqrt{3}}{2}=-\frac{2\sqrt{15}+\sqrt{5}}{10};
(2)∵sinα=\frac{2\sqrt{5}}{5},cosα=-\frac{\sqrt{5}}{5},∴sin2α=2sinαcosα=2×\frac{2\sqrt{5}}{5}×(-\frac{\sqrt{5}}{5})=-\frac{4}{5},
cos2α=2co{s}^{2}α-1=2×(-\frac{\sqrt{5}}{5})^{2}-1=-\frac{3}{5}.
∴sin(\frac{3π}{4}-2α)=sin\frac{3π}{4}cos2α-cos\frac{3π}{4}sin2α=\frac{\sqrt{2}}{2}×(-\frac{3}{5})-\frac{\sqrt{2}}{2}×(-\frac{4}{5})=\frac{\sqrt{2}}{10}.
點評 本題考查三角函數(shù)的化簡求值,考查了三角函數(shù)中的恒等變換應(yīng)用,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | \frac{1}{2} | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直角 | B. | 銳角 | C. | 鈍角 | D. | 直角或銳角 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3≤m≤6 | B. | m≥-3 | C. | -\frac{68}{7}≤m≤6 | D. | -3≤m≤\frac{3}{2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2011 | B. | -2012 | C. | 2014 | D. | 2013 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com