1.等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1000+a1018=2,則S2017=(  )
A.1008B.1009C.2016D.2017

分析 由等差數(shù)列的性質(zhì)得a1+a2017=2由此能求出結(jié)果

解答 解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,a1000+a1018=2,
∴a1+a2017=2,
∴S2017=$\frac{2017}{2}$(a1+a2017)=2017.
故選:D

點(diǎn)評(píng) 本題考查等差數(shù)列的前2017項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.“數(shù)列{an}為等比數(shù)列”是“${a_{n+1}}^2={a_n}•{a_{n+2}}$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)集合A、B均為實(shí)數(shù)集R的子集,記:A+B={a+b|a∈A,b∈B};
(1)已知A={0,1,2},B={-1,3},試用列舉法表示A+B;
(2)設(shè)a1=$\frac{2}{3}$,當(dāng)n∈N*,且n≥2時(shí),曲線$\frac{x^2}{{{n^2}-n+1}}+\frac{y^2}{1-n}=\frac{1}{9}$的焦距為an,如果A={a1,a2,…,an},B=$\{-\frac{1}{9},-\frac{2}{9},-\frac{2}{3}\}$,設(shè)A+B中的所有元素之和為Sn,對(duì)于滿足m+n=3k,且m≠n的任意正整數(shù)m、n、k,不等式Sm+Sn-λSk>0恒成立,求實(shí)數(shù)λ的最大值;
(3)若整數(shù)集合A1⊆A1+A1,則稱A1為“自生集”,若任意一個(gè)正整數(shù)均為整數(shù)集合A2的某個(gè)非空有限子集中所有元素的和,則稱A2為“N*的基底集”,問:是否存在一個(gè)整數(shù)集合既是自生集又是N*的基底集?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,平行四邊形ABCD的兩條對(duì)角線相交于點(diǎn)M,且$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,則$\overrightarrow{MD}$=( 。
A.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$B.-$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$C.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$D.-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在正三棱柱ABC-A1B1C1中,若AB=$\sqrt{2}$BB1,則AB1與BC1所成角的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=2,b3=4,a1=b1,a8=b4
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.頂點(diǎn)在原點(diǎn),對(duì)稱軸是坐標(biāo)軸,且焦點(diǎn)在直線2x+y-2=0上的拋物線方程是y2=4x或x2=8y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.過雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn)作圓x2+y2=a2的兩條切線,切點(diǎn)分別為A,B,若∠AOB=120°(O是坐標(biāo)原點(diǎn)),則雙曲線C的離心率為( 。
A.2B.3C.$\frac{1}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知A={x|x≤7},B={x|x>2},則A∩B={x|2<x≤7}.

查看答案和解析>>

同步練習(xí)冊(cè)答案