1.已知命題p:?x∈R,x2-a≥0,命題q:?x∈R,x2+2ax+2-a=0.若命題“p∧q”是真命題,則實數(shù)a的取值范圍為(-∞,-2].

分析 根據(jù)條件分別求出命題p,q為真命題的等價條件,然后根據(jù)復合命題真假關(guān)系進行求解即可.

解答 解:?x∈R,x2-a≥0得a≤x2,
則a≤0,即p:a≤0,
若:?x∈R,x2+2ax+2-a=0為真命題,則判別式△=4a2-4(2-a)≥0,
即a2+a-2≥0,得a≥1或a≤-2,即q:a≥1或a≤-2,
若“p∧q”是真命題,則p,q同時為真命題,
則$\left\{\begin{array}{l}{a≤0}\\{a≥1或a≤-2}\end{array}\right.$,得a≤-2,
故答案為:(-∞,-2].

點評 本題主要考查復合命題真假關(guān)系的應用,根據(jù)條件求出命題p,q的等價關(guān)系是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.平面上四個點P,A,B,C滿足$\overrightarrow{PC}$-$\overrightarrow{AC}$=2$\overrightarrow{AB}$,且$\overrightarrow{PA}$=λ$\overrightarrow{PB}$,則實數(shù)λ的值為( 。
A.2B.$\frac{2}{3}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.一戶居民根據(jù)以往的月用電量情況,繪制了月用電量的頻率分布直方圖(月用電量都在25度到325度之間)如圖所示,將月用電量落入該區(qū)間的頻率作為概率.若每月用電量在200度以內(nèi)(含200度),則每度電價0.5元.若每月的用電量超過200度,則超過的部分每度電價0.6元.記X(單位:度,25≤X≤325)為該用戶下個月的用電量,T(單位:元)為下個月所繳納的電費.
(1)估計該用戶的月用電量的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)將T表示為X的函數(shù);
(3)根據(jù)直方圖估計下個月所繳納的電費T∈[37.5,115)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知:$\overrightarrow a$=(-$\sqrt{3}$sinωx,cosωx),$\overrightarrow b$=(cosωx,cosωx),ω>0,記函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.A={x|x2+ax═0},B={x|(x2+ax)2+a(x2+ax)=0},A⊆B,且B⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\frac{1}{2}$ax3-$\frac{3}{2}$x2+$\frac{3}{2}$a2x(a∈R)在x=1處取得極大值,則a=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知點A(2,m),B(1,2),C(3,1)若$\overrightarrow{AB}$•$\overrightarrow{CB}$=|$\overrightarrow{AC}$|,則實數(shù)m等于( 。
A.1B.$\frac{5}{3}$C.2D.$\frac{7}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)y=($\frac{1}{3}$) |x|-1的單調(diào)增區(qū)間為(-∞,0)(亦可寫成(-∞,0]).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設(shè)集合M={x|x>2},P={x|x<3},那么“x∈M或x∈P”是“x∈M”的( 。
A.充分條件但非必要條件B.必要條件但非充分條件
C.充分必要條件D.非充分條件,也非必要條件

查看答案和解析>>

同步練習冊答案