15.△ABC滿足$\overrightarrow{AB}•\overrightarrow{AC}=2\sqrt{3},∠BAC={30°}$,設(shè)M為△ABC內(nèi)一點(不在邊界上),記x、y、z分別表示△MBC、△MAC、△MAB的面積,若z=$\frac{1}{2},則\frac{1}{x}+\frac{4}{y}$最小值為( 。
A.9B.8C.18D.16

分析 如圖所示,△ABC滿足$\overrightarrow{AB}•\overrightarrow{AC}=2\sqrt{3},∠BAC={30°}$,可得cbcos30°=2$\sqrt{3}$,解得bc=4.可得S△ABC=$\frac{1}{2}$bcsin30°=1,可得x+y=$\frac{1}{2}$.(x,y>0).再利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:如圖所示,
∵△ABC滿足$\overrightarrow{AB}•\overrightarrow{AC}=2\sqrt{3},∠BAC={30°}$,
∴cbcos30°=2$\sqrt{3}$,解得bc=4.
∴S△ABC=$\frac{1}{2}$bcsin30°=$\frac{1}{2}×4×\frac{1}{2}$=1,
∴x+y+$\frac{1}{2}$=1,解得x+y=$\frac{1}{2}$.(x,y>0).
∴$\frac{1}{x}+\frac{4}{y}$=2(x+y)$(\frac{1}{x}+\frac{4}{y})$=$2(5+\frac{y}{x}+\frac{4x}{y})$≥$2(5+2\sqrt{\frac{y}{x}•\frac{4x}{y}})$=18,當(dāng)且僅當(dāng)y=2x=$\frac{1}{3}$時取等號.
故選:C.

點評 本題考查了數(shù)量積運算性質(zhì)、“乘1法”與基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列說法中正確的是( 。
A.命題“?x∈R.ex>0”的否定是“?x∈R,ex>0”
B.命題“若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個零點”的逆命題是真命題
C.“x2+2x≥ax在x∈[1,2]上恒成立”?“對于x∈[1,2]有(x2+2x)min≥(ax)max
D.命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若角θ是第四象限的角,則角${-^{\;}}\frac{θ}{2}$是(  )
A.第一、三象限角B.第二、四象限角C.第二、三象限角D.第一、四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在矩形ABCD中,AB=2,AD=1,點P為矩形ABCD內(nèi)一點,則使得$\overrightarrow{AP}$•$\overrightarrow{AC}$≥1的概率為$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=Msin(ωx+φ)(M>0,|φ|<\frac{π}{2})$的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,若(2a-c)cosB=bcosC,求$f(\frac{A}{2})$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列說法中正確的是(  )
A.經(jīng)過不同的三點有且只有一個平面
B.沒有公共點的兩條直線一定平行
C.垂直于同一平面的兩直線是平行直線
D.垂直于同一平面的兩平面是平行平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出下列四個命題:
①函數(shù)$f(x)=1-2{sin^2}\frac{x}{2}$的最小正周期為2π;
②“三個數(shù)a,b,c成等比數(shù)列”是“b=$\sqrt{ac}$”的充要條件.
③命題p:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0,則命題“p∧(¬q)”是假命題;
④函數(shù)f(x)=x3-3x2+1在點(1,f(1))處的切線方程為3x+y-2=0.
其中正確命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2+2alnx,a∈R.
(Ⅰ)若f(x)在x=1處取得極值,求實數(shù)a的值;
(Ⅱ)若不等式f(x)>0對任意x∈[1,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,已知A(0,2),B(2,0),C(-2,-1)
(1)求BC邊上的高AH所在的直線方程;
(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案