精英家教網 > 高中數學 > 題目詳情
17.設函數f(x)=$\left\{\begin{array}{l}{{2}^{x},(x≥1)}\\{x,(x<1)}\end{array}\right.$,則f(log23)的值為( 。
A.2B.3C.log23D.log32

分析 由log23>1,利用函數性質得f(log23)=${2}^{lo{g}_{2}3}$,由此能求出結果.

解答 解:∵函數f(x)=$\left\{\begin{array}{l}{{2}^{x},(x≥1)}\\{x,(x<1)}\end{array}\right.$,
∴f(log23)=${2}^{lo{g}_{2}3}$=3.
故選:B.

點評 本題考查函數值的求法,是基礎題,解題時要認真審題,注意函數性質的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

7.已知△ABC滿足BC•AC=2$\sqrt{2}$,若C=$\frac{3π}{4}$,$\frac{sinA}{sinB}$=$\frac{1}{2cos(A+B)}$,則AB=$\sqrt{10}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.某藥廠在動物體內進行新藥試驗,已知每投放劑量為m(m>0)的藥劑后,經過x小時該藥劑在動物體內釋放的濃度y(y毫克/升)滿足函數y=mf(x),其中f(x)=$\left\{\begin{array}{l}-\frac{1}{2}{x^2}+2x+8,0<x≤4\\-\frac{x}{2}-{log_2}x+12,4<x≤16\end{array}$當藥劑在動物體內釋放的濃度不低于12(毫克/升)時,稱為該藥劑達到有效.
(1)為了使在8小時之內(從投放藥劑算起包括8小時)始終有效,求應該投放的藥劑m的最小值;
(2)若m=2,k 為整數,若該藥在k 小時之內始終有效,求k的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點.
(1)求異面直線AP,BM所成角的余弦值;
(2)點N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為$\frac{4}{5}$,求λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.等比數列{an}中,若a5=1,a8=8,則公比q=2.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.若函數f(x)=$\frac{1}{3}$x3+x2-ax+3a在區(qū)間[1,2]上單調遞增,則實數a的取值范圍是(-∞,3].

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.設函數f(x)=Asin(ωx+φ)(A,ω,φ為常數,且A>0,ω>0,0<φ<π)的部分圖象如圖所示.
(1)求A,ω,φ的值;
(2)設θ為銳角,且f(θ)=-$\frac{3}{5}\sqrt{3}$,求f(θ-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.求雙曲線C:$\frac{x^2}{8}$-$\frac{y^2}{12}$=1的焦點坐標、實軸長、虛軸長及漸近線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.設雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)左,右焦點為F1,F2,P是雙曲線C上的一點,PF1與x軸垂直,△PF1F2的內切圓方程為(x+1)2+(y-1)2=1,則雙曲線方程為(  )
A.$\frac{x^2}{2}-\frac{y^2}{3}=1$B.${x^2}-\frac{y^2}{2}=1$C.$\frac{x^2}{2}-{y^2}=1$D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

同步練習冊答案