【題目】已知曲線C的參數(shù)方程為(t為參數(shù)),以原點O為極點,x軸的非負半軸為極軸建立極坐標系,過極點的兩直線l1,l2相互垂直,與曲線C分別相交于A,B兩點(不同于點O),且l1的傾斜角為.
(1)求曲線C的極坐標方程和直線l2的直角坐標方程;
(2)求△OAB的面積.
【答案】(1) C的極坐標方程ρcos2θ=2sinθ,l2的直角坐標方程; (2).
【解析】
(1)將曲線C的參數(shù)方程消去參數(shù)化普通方程,得,再用,代入直角坐標方程,求出曲線C極坐標方程;由已知l1的傾斜角為,直線l1,l2相互垂直,即可求出l2的直角坐標方程;
(2)曲線C的極坐標方程分別與直線l1,l2極坐標方程聯(lián)立,求出兩交點的極坐標,再由兩直線l1,l2相互垂直,即可求出結(jié)論.
(1)曲線C的參數(shù)方程為(t為參數(shù)),
消去參數(shù)得普通方程為,
將,代入得,
化簡為.即為所求的極坐標方程
l1的傾斜角為,直線l1,l2相互垂直,所以直線的斜率為,
所以l2的直角坐標方程為.
(2)過極點的兩直線l1,l2相互垂直,
與曲線C分別相交于A,B兩點(不同于點O),
所以,解得,
同理,解得.
所以.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足:,,且.
(1)求數(shù)列前20項的和;
(2)求通項公式;
(3)設(shè)的前項和為,問:是否存在正整數(shù)、,使得?若存在,請求出所有符合條件的正整數(shù)對,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,A、B是海岸線OM、ON上兩個碼頭,海中小島有碼頭Q到海岸線OM、ON的距離分別為、,測得,,以點O為坐標原點,射線OM為x軸的正半軸,建立如圖所示的直角坐標系,一艘游輪以小時的平均速度在水上旅游線AB航行(將航線AB看作直線,碼頭Q在第一象限,航線BB經(jīng)過點Q).
(1)問游輪自碼頭A沿方向開往碼頭B共需多少分鐘?
(2)海中有一處景點P(設(shè)點P在平面內(nèi),,且),游輪無法靠近,求游輪在水上旅游線AB航行時離景點P最近的點C的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知無窮數(shù)列的前項和為,且滿足,其中、、是常數(shù).
(1)若,,,求數(shù)列的通項公式;
(2)若,,,且,求數(shù)列的前項和;
(3)試探究、、滿足什么條件時,數(shù)列是公比不為的等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD為矩形,AB=2AD=4,M為AB的中點,將△ADM沿DM折起,得到四棱錐A1﹣DMBC,設(shè)A1C的中點為N,在翻折過程中,得到如下有三個命題:①BN∥平面A1DM;②三棱錐N﹣DMC的最大體積為;③在翻折過程中,存在某個位置,使得DM⊥A1C.其中正確命題的序號為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓與長軸是短軸兩倍的橢圓:相切于點
(1)求橢圓與圓的方程;
(2)過點引兩條互相垂直的兩直線與兩曲線分別交于點與點(均不重合).若為橢圓上任一點,記點到兩直線的距離分別為,求的最大值,并求出此時的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:()的焦距為,且右焦點F與短軸的兩個端點組成一個正三角形.若直線l與橢圓C交于、,且在橢圓C上存在點M,使得:(其中O為坐標原點),則稱直線l具有性質(zhì)H.
(1)求橢圓C的方程;
(2)若直線l垂直于x軸,且具有性質(zhì)H,求直線l的方程;
(3)求證:在橢圓C上不存在三個不同的點P、Q、R,使得直線、、都具有性質(zhì)H.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】福彩是利國利民游戲,其刮刮樂之《藍色奇跡》:如圖(1)示例,刮開票面看到最左側(cè)一列四個兩位數(shù)字為“我的號碼”,最上行四個兩位數(shù)為“中獎號碼”,這八個兩位數(shù)是00至99這一百個數(shù)字隨機產(chǎn)生的,若兩個數(shù)字相同即中得其相交線上的獎金,獎金可以累加.小明買的一張《藍色奇跡》刮刮樂如圖(2),除了一個“我的號碼”外,他已經(jīng)刮開票面上其它所有數(shù)字,依據(jù)目前的信息,小明從這張刮刮樂得到的獎金額高于600元的概率為(無所得稅)( )
圖(1) 圖(2)
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,當P(x,y)不是原點時,定義P的“伴隨點”為;
當P是原點時,定義P的“伴隨點“為它自身,平面曲線C上所有點的“伴隨點”所構(gòu)成的曲線定義為曲線C的“伴隨曲線”.現(xiàn)有下列命題:
①若點A的“伴隨點”是點,則點的“伴隨點”是點A
②單位圓的“伴隨曲線”是它自身;
③若曲線C關(guān)于x軸對稱,則其“伴隨曲線”關(guān)于y軸對稱;
④一條直線的“伴隨曲線”是一條直線.
其中的真命題是_____________(寫出所有真命題的序列).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com