已知定義域?yàn)镽的單調(diào)函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=
x3
-2x
(I)求f(-1)的值;
(II)求f(x)的解析式;
(III)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.
分析:(I)根據(jù)題意得,f(-1)=-f(1),結(jié)合當(dāng)x>0時(shí),f(x)=
x
3
-2x即可求出f(-1);
(II)由定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),知f(0)=0.當(dāng)x<0時(shí),f(-x)=
-x
3
-2-x,由函數(shù)f(x)是奇函數(shù),知f(x)=
x
3
+2-x,由此能求出f(x)的解析式.
(III)由f(1)=-
5
3
<f(0)=0且f(x)在R上單調(diào),知f(x)在R上單調(diào)遞減,由f(t2-2t)+f(2t2-k)<0,得f(t2-2t)<-f(2t2-k),再由根的差別式能求出實(shí)數(shù)k的取值范圍.
解答:解:(I)f(-1)=-f(1)=-(
1
3
-2)=
5
3
;
(II)∵定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),
∴f(0)=0,
當(dāng)x<0時(shí),-x>0,
f(-x)=-
x
3
-2-x
又∵函數(shù)f(x)是奇函數(shù),
∴f(-x)=-f(x),
∴f(x)=
x
3
+2-x,
綜上所述f(x)=
x
3
-2x,x>0
0,x=0
x
3
+2-x,x<0

(III)∵f(1)=-
5
3
<f(0)=0,
且f(x)在R上單調(diào),
∴f(x)在R上單調(diào)遞減,
由f(t2-2t)+f(2t2-k)<0,
得f(t2-2t)<-f(2t2-k),
∵f(x)是奇函數(shù),
∴f(t2-2t)<f(k-2t2),
又∵f(x)是減函數(shù),
∴t2-2t>k-2t2
即3t2-2t-k>0對(duì)任意t∈R恒成立,
∴△=4+12k<0得k<-
1
3
,即為所求.
點(diǎn)評(píng):本題考查函數(shù)的恒成立問(wèn)題,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化,同時(shí)注意函數(shù)性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的單調(diào)函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=
x3
-2x

(1)求f(x)的解析式;
(2)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省安慶市宿松縣復(fù)興中學(xué)高一(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知定義域?yàn)镽的單調(diào)函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),
(1)求f(x)的解析式;
(2)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省“華安、連城、永安、漳平一中、龍海二中、泉港一中”六校聯(lián)考高一(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知定義域?yàn)镽的單調(diào)函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),
(1)求f(x)的解析式;
(2)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省溫州市十校聯(lián)合體高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知定義域?yàn)镽的單調(diào)函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),
(1)求f(x)的解析式;
(2)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案