【題目】三棱錐的三組相對棱(相對的棱是指三棱錐中成異面直線的一組棱)分別相等,且長分別為,其中,則該三棱錐體積的最大值為
A. B. C. D.
【答案】D
【解析】試題分析:三棱錐擴(kuò)展為長方體,三棱錐的體積轉(zhuǎn)化為長方體的體積與四個(gè)三棱錐的體積的差,推出B不正確,則C不正確,通過特殊圖形說明D正確
解:如圖設(shè)長方體的三度為,a,b,c;所以所求三棱錐的體積為:abc-4××abc=abc. a2+b2=2,b2+c2=n2,a2+c2=m2,所以2(a2+b2+c2)=n2+m2+2=8. a2+b2+c2=4.因?yàn)?/span>4≥3
,abc≤此時(shí)a=b=c,與n2+m2=6,a2+b2=2,矛盾,所以選項(xiàng)B不正確;則C不正確;當(dāng)?shù)酌嫒切问堑妊切螘r(shí),m=n=
不難求出三棱錐體積的最大值為,選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:
超市 | A | B | C | D | E | F | G |
廣告費(fèi)支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線性回歸模型擬合與的關(guān)系,求關(guān)于的線性回歸方程;
(2)用二次函數(shù)回歸模型擬合與的關(guān)系,可得回歸方程:,
經(jīng)計(jì)算二次函數(shù)回歸模型和線性回歸模型的分別約為和,請用說明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測超市廣告費(fèi)支出為3萬元時(shí)的銷售額.
參數(shù)數(shù)據(jù)及公式:,,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】全世界人們越來越關(guān)注環(huán)境保護(hù)問題,某監(jiān)測站點(diǎn)于2016年8月某日起連續(xù)天監(jiān)測空氣質(zhì)量指數(shù)(),數(shù)據(jù)統(tǒng)計(jì)如下:
(1)根據(jù)所給統(tǒng)計(jì)表和頻率分布直方圖中的信息求出的值,并完成頻率分布直方圖;
(2)由頻率分布直方圖求該組數(shù)據(jù)的平均數(shù)與中位數(shù);
(3)在空氣質(zhì)量指數(shù)分別屬于和的監(jiān)測數(shù)據(jù)中,用分層抽樣的方法抽取5天,再從中任意選取2天,求事件 “兩天空氣都為良”發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的半徑為,圓心在軸正半軸上,直線與圓相切.
(1)求圓的方程;
(2)過點(diǎn)的直線與圓交于不同的兩點(diǎn), 且為時(shí),求: 的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(),,
(Ⅰ) 試求曲線在點(diǎn)處的切線l與曲線的公共點(diǎn)個(gè)數(shù);(Ⅱ) 若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍.
(附:當(dāng),x趨近于0時(shí), 趨向于)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積=(弦×矢+矢2).弧田,由圓弧和其所對弦所圍成.公式中“弦”指圓弧對弦長,“矢”等于半徑長與圓心到弦的距離之差,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與實(shí)際面積之間存在誤差.現(xiàn)有圓心角為π,弦長等于9米的弧田.按照《九章算術(shù)》中弧田面積的經(jīng)驗(yàn)公式計(jì)算所得弧田面積與實(shí)際面積的差為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實(shí)行二級階梯式水價(jià)計(jì)量辦法,具體如下:第一階梯,每戶居民月用水量不超過12噸,價(jià)格為4元/噸;第二階梯,每戶居民月用水量超過12噸,超過部分的價(jià)格為8元/噸.為了了解全市居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成8組,制成了如圖1所示的頻率分布直方圖.
(圖1) (圖2)
(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;
(Ⅱ)通過頻率分布直方圖,估計(jì)該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(fèi)(元)與月份的散點(diǎn)圖,其擬合的線性回歸方程是. 若張某2016年1~7月份水費(fèi)總支出為312元,試估計(jì)張某7月份的用水噸數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)=是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)若對于任意都有f(kx2)+f(2x﹣1)>0成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx,則“b<0”是“f(f(x))的最小值與f(x)的最小值相等”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com