【題目】已知過點(diǎn)的動(dòng)直線與圓相交于、兩點(diǎn).
(1)當(dāng)時(shí),求直線的方程;
(2)設(shè)動(dòng)點(diǎn)滿足,求點(diǎn)的軌跡方程.
【答案】(1)直線的方程分別為或(2)點(diǎn)的軌跡方程是
【解析】
(1)先驗(yàn)證直線斜率不存在是否滿足題意,然后設(shè)直線斜率,得到直線方程,用垂徑定理及點(diǎn)到直線的距離公式,求出圓心到直線距離,解關(guān)于斜率的方程,即可得出結(jié)論;
(2)向量的數(shù)量積用坐標(biāo)表示,代入已知條件,即可求出軌跡方程.
(1)解:由題意知,圓的圓心坐標(biāo)是,半徑為.
若直線的斜率不存在,直線的方程是,
圓心到直線的距離,
此時(shí)直線與圓相離.不符合題意;
若直線的斜率存在,可設(shè)直線的方程為,
即.
由題意得,圓心到直線的距離,
所以.
化簡得,解得.
所以所求直線的方程分別為或.
(2)解:設(shè),則.
由題意得,化簡得.
所以點(diǎn)的軌跡方程是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的右焦點(diǎn)為F(2,0),過點(diǎn)F的直線交橢圓于M、N兩點(diǎn)且MN的中點(diǎn)坐標(biāo)為 .
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l不經(jīng)過點(diǎn)P(0,b)且與C相交于A,B兩點(diǎn),若直線PA與直線PB的斜率的和為1,試判斷直線 l是否經(jīng)過定點(diǎn),若經(jīng)過定點(diǎn),請求出該定點(diǎn);若不經(jīng)過定點(diǎn),請給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (為常數(shù))
(Ⅰ)若是定義域上的單調(diào)函數(shù),求的取值范圍;
(Ⅱ)若存在兩個(gè)極值點(diǎn),且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查民眾對國家實(shí)行“新農(nóng)村建設(shè)”政策的態(tài)度,現(xiàn)通過網(wǎng)絡(luò)問卷隨機(jī)調(diào)查了年齡在20周歲至80周歲的100人,他們年齡頻數(shù)分布和支持“新農(nóng)村建設(shè)”人數(shù)如下表:
(1)根據(jù)上述統(tǒng)計(jì)數(shù)據(jù)填下面的2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為以50歲為分界點(diǎn)對“新農(nóng)村建設(shè)”政策的支持度有差異;
(2)為了進(jìn)一步推動(dòng)“新農(nóng)村建設(shè)”政策的實(shí)施,中央電視臺(tái)某節(jié)目對此進(jìn)行了專題報(bào)道,并在節(jié)目最后利用隨機(jī)撥號的形式在全國范圍內(nèi)選出4名幸運(yùn)觀眾(假設(shè)年齡均在20周歲至80周歲內(nèi)),給予適當(dāng)?shù)莫?jiǎng)勵(lì).若以頻率估計(jì)概率,記選出4名幸運(yùn)觀眾中支持“新農(nóng)村建設(shè)”人數(shù)為,試求隨機(jī)變量的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體中,,,分別是面,面,面的中心,,.
(1)求證:平面平面;
(2)求三棱錐的體積;
(3)在棱上是否存在點(diǎn),使得平面平面?如果存在,請求出的長度;如果不存在,求說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)判斷函數(shù)在上的單調(diào)性,并給出證明;
(3)當(dāng)時(shí),函數(shù)的值域是,求實(shí)數(shù)與的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的菱形,,,平面平面,點(diǎn)為棱的中點(diǎn).
(Ⅰ)在棱上是否存在一點(diǎn),使得平面,并說明理由;
(Ⅱ)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一枚質(zhì)地均勻的硬幣連擲三次,事件“恰出現(xiàn)1次反面朝上”的概率記為,現(xiàn)采用隨機(jī)模擬的方法估計(jì)的值:用計(jì)算機(jī)產(chǎn)生了20組隨機(jī)數(shù),其中出現(xiàn)“0”表示反面朝上,出現(xiàn)“1”表示正面朝上,結(jié)果如下,若出現(xiàn)“恰有1次反面朝上”的頻率記為,則,分別為( )
111 001 011 010 000 111 111 111 101 010
000 101 011 010 001 011 100 101 001 011
A. ,B. ,C. ,D. ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)求函數(shù)的極值;
(2)當(dāng)時(shí),關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com