已知函數(shù).
(Ⅰ)設(shè)函數(shù)的圖像的頂點(diǎn)的縱坐標(biāo)構(gòu)成數(shù)列,求證:為等差數(shù)列;
(Ⅱ)設(shè)函數(shù)的圖像的頂點(diǎn)到軸的距離構(gòu)成數(shù)列,求的前項(xiàng)和.
(1)根據(jù)等差數(shù)列的定義來證明,結(jié)合函數(shù)的將誒西施,得到其通項(xiàng)公式即可證明。
(2)
解析試題分析:解:(Ⅰ)∵,
∴, 2分
∴,
∴數(shù)列為等差數(shù)列. 4分
(Ⅱ)由題意知,, 6分
∴當(dāng)時(shí),,
8分
當(dāng)時(shí),,
. 10分
∴. 12分
考點(diǎn):等差數(shù)列,等比數(shù)列
點(diǎn)評:解決的關(guān)鍵是根據(jù)利用函數(shù)為背景得到數(shù)列的通項(xiàng)公式,然后借助于等比數(shù)列的求和公式求解,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)Sn為等差數(shù)列{a n}的前n項(xiàng)和,已知a 9 =-2,S 8 =2.
(1)求首項(xiàng)a1和公差d的值;
(2)當(dāng)n為何值時(shí),Sn最大?并求出Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{}的前項(xiàng)和為(為常數(shù),N*).
(1)求,,;
(2)若數(shù)列{}為等比數(shù)列,求常數(shù)的值及;
(3)對于(2)中的,記,若對任意的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,
(1)若,求;
(2)若,求的前6項(xiàng)和;
(3)若,證明是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列滿足,。
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)求的前項(xiàng)和及使得最大的序號的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{}是等差數(shù)列,,時(shí),若自然數(shù)滿足,使得成等比數(shù)列,(1)求數(shù)列{}的通項(xiàng)公式;(2)求數(shù)列的通項(xiàng)公式及其前n項(xiàng)的和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)已知點(diǎn)Pn(an,bn)滿足an+1=an·bn+1,bn+1= (n∈N*)且點(diǎn)P1的坐標(biāo)為(1,-1).(1)求過點(diǎn)P1,P2的直線l的方程;
(2)試用數(shù)學(xué)歸納法證明:對于n∈N*,點(diǎn)Pn都在(1)中的直線l上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com