【題目】節(jié)能環(huán)保日益受到人們的重視,水污染治理也已成為十三五規(guī)劃的重要議題.某地有三家工廠,分別位于矩形的兩個(gè)頂點(diǎn)、的中點(diǎn)處,,,為了處理三家工廠的污水,現(xiàn)要在該矩形區(qū)域上(含邊界),且與、等距離的一點(diǎn)處,建造一個(gè)污水處理廠,并鋪設(shè)三條排污管道、.設(shè)BAO=x(弧度),排污管道的總長(zhǎng)度為

1)將表示為的函數(shù);

2)試確定點(diǎn)的位置,使鋪設(shè)的排污管道的總長(zhǎng)度最短,并求總長(zhǎng)度的最短公里數(shù)(精確到).

【答案】1 2)點(diǎn)中垂線上離點(diǎn)距離為處,總長(zhǎng)度的最短公里數(shù)是

【解析】

1)直接由已知條件求出的長(zhǎng)度,即可得到所求函數(shù)關(guān)系式;

2)記,則,求出的范圍,即可得出結(jié)論.

解:(1)由已知得,

(其中

2)記,則,則有,

解得

由于,所以,當(dāng),即點(diǎn)中垂線上離點(diǎn)距離為處,取得最小值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列 的前項(xiàng)和為,對(duì)一切,點(diǎn)都在函數(shù)的圖象上.

1)求,歸納數(shù)列的通項(xiàng)公式(不必證明);

2)將數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為,, ;,,;,,分別計(jì)算各個(gè)括號(hào)內(nèi)各數(shù)之和,設(shè)由這些和按原來(lái)括號(hào)的前后順序構(gòu)成的數(shù)列為,求的值;

3)設(shè)為數(shù)列的前項(xiàng)積,若不等式對(duì)一切都成立,其中,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,平面,,點(diǎn)分別在棱、上,且,,,.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一塊鐵皮零件,其形狀是由邊長(zhǎng)為的正方形截去一個(gè)三角形所得的五邊形,其中,如圖所示.現(xiàn)在需要用這塊材料截取矩形鐵皮,使得矩形相鄰兩邊分別落在上,另一頂點(diǎn)落在邊邊上.設(shè),矩形的面積為.

1)試求出矩形鐵皮的面積關(guān)于的函數(shù)解析式,并寫出定義域;

2)試問如何截。取何值時(shí)),可使得到的矩形的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線C1a0b0)的左右焦點(diǎn)為F1,F2|F1F2|2c),以坐標(biāo)原點(diǎn)O為圓心,以c為半徑作圓A,圓A與雙曲線C的一個(gè)交點(diǎn)為P,若三角形F1PF2的面積為a2,則C的離心率為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,橢圓的兩焦點(diǎn)與橢圓短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,右焦點(diǎn)到右頂點(diǎn)的距離為1.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)是否存在與橢圓C交于A,B兩點(diǎn)的直線l,使得成立?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足:,,且對(duì)一切,均有

1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和

3)設(shè),記數(shù)列的前項(xiàng)和為,求正整數(shù),使得對(duì)任意,均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCDE,F分別是AB,PD的中點(diǎn),且PA=AD

(Ⅰ)求證:AF∥平面PEC;

(Ⅱ)求證:平面PEC⊥平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題中,真命題是( 。

A.和兩條異面直線都相交的兩條直線是異面直線

B.和兩條異面直線都相交于不同點(diǎn)的兩條直線是異面直線

C.和兩條異面直線都垂直的直線是異面直線的公垂線

D.、是異面直線,、是異面直線,則是異面直線

查看答案和解析>>

同步練習(xí)冊(cè)答案