已知中心在原點(diǎn),焦點(diǎn)在x軸的橢圓的離心率為,橢圓上一點(diǎn)P到兩個(gè)焦點(diǎn)的距離之和為8,
(1)求橢圓的方程
(2)求與上述橢圓共焦點(diǎn),且一條漸近線為y=x的雙曲線方程
設(shè)橢圓方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓上存在一點(diǎn)P,使得點(diǎn)P到兩焦點(diǎn)的距離之比為,則此橢圓離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)直線與橢圓相交于兩個(gè)不同的點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)設(shè)橢圓C:的左、右焦點(diǎn)分別為,,點(diǎn)滿足  
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若已知點(diǎn),設(shè)直線與橢圓C相交于A,B兩點(diǎn),且,
求橢圓C的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(12分)已知橢圓的中心在原點(diǎn),分別為它的左、右焦點(diǎn),直線為它的一條準(zhǔn)線,又知橢圓上存在點(diǎn),使得.
(1)求橢圓的方程;
(2)若是橢圓上不與橢圓頂點(diǎn)重合的任意兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)是,直線分別交軸于點(diǎn),點(diǎn),探究是否為定值,若為定值,求出該定值,若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓C:,為橢圓C的兩焦點(diǎn),P為橢圓C上一點(diǎn),連接
延長交橢圓于另外一點(diǎn)Q,則⊿的周長_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知分別為橢圓的左、右兩個(gè)焦點(diǎn),一條直線經(jīng)過點(diǎn)與橢圓交于兩點(diǎn), 且的周長為8。
(1)求實(shí)數(shù)的值;
(2)若的傾斜角為,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分14分)
已知橢圓的左焦點(diǎn)為,離心率e=,M、N是橢圓上的動
點(diǎn)。
(Ⅰ)求橢圓標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)動點(diǎn)P滿足:,直線OM與ON的斜率之積為,問:是否存在定點(diǎn)
使得為定值?,若存在,求出的坐標(biāo),若不存在,說明理由。
(Ⅲ)若在第一象限,且點(diǎn)關(guān)于原點(diǎn)對稱,點(diǎn)軸上的射影為,連接 并延長
交橢圓于點(diǎn),證明:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)如圖,點(diǎn)為圓形紙片內(nèi)不同于圓心的定點(diǎn),動點(diǎn)在圓周上,將紙片折起,使點(diǎn)與點(diǎn)重合,設(shè)折痕交線段于點(diǎn).現(xiàn)將圓形紙片放在平面直角坐標(biāo)系中,設(shè)圓,記點(diǎn)的軌跡為曲線.
⑴證明曲線是橢圓,并寫出當(dāng)時(shí)該橢圓的標(biāo)準(zhǔn)方程;
⑵設(shè)直線過點(diǎn)和橢圓的上頂點(diǎn),點(diǎn)關(guān)于直線的對稱點(diǎn)為點(diǎn),若橢圓的離心率,求點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案