在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.
(1)請在線段CE上找到點F的位置,使得恰有直線BF∥平面ACD,并證明這一結(jié)論;
(2)求多面體ABCDE的體積.
科目:高中數(shù)學 來源: 題型:填空題
對于四面體ABCD,下列命題正確的是 (寫出所有正確命題的編號)。
①相對棱AB與CD所在的直線異面;
②由頂點A作四面體的高,其垂足是BCD的三條高線的交點;
③若分別作ABC和ABD的邊AB上的高,則這兩條高所在直線異面;
④分別作三組相對棱中點的連線,所得的三條線段相交于一點;
⑤最長棱必有某個端點,由它引出的另兩條棱的長度之和大于最長棱。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8,高為4的等腰三角形,側(cè)視圖(或稱左視圖)是一個底邊長為6,高為4的等腰三角形.
(1)求該幾何體的體積V;
(2)求該幾何體的側(cè)面積S.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知正方形的邊長為,點分別在邊上,,現(xiàn)將△沿線段折起到△位置,使得.
(1)求五棱錐的體積;
(2)在線段上是否存在一點,使得平面?若存在,求;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=8,E是PB上任意一點,△AEC面積的最小值是3.
(1)求證:AC⊥DE;
(2)求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖1,,,過動點A作,垂足D在線段BC上且異于點B,連接AB,沿將△折起,使(如圖2所示).
(1)當的長為多少時,三棱錐的體積最大;
(2)當三棱錐的體積最大時,設點,分別為棱,的中點,試在棱上確定一點,使得,并求與平面所成角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
三棱柱的直觀圖和三視圖如下圖所示,其側(cè)視圖為正三角形(單位cm)
⑴當x=4時,求幾何體的側(cè)面積和體積
⑵當x取何值時,直線AB1與平面BB1C1C和平面A1B1C1所成角大小相等。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com