記函數(shù)f(x)=lg(
5-x
x+1
-2)
的定義域為A,g(x)=
x-a-1
2a-x
(a<1)
的定義域為B,
(Ⅰ)若a=-
1
2
,求A∩B;
(Ⅱ)若B⊆A,求實數(shù)a的取值范圍.
分析:(1)根據(jù)兩函數(shù)的解析式有意義求出集合A和集合B,把a=-
1
2
代入后化簡集合B,然后直接取交集;
(2)由集合B是集合A的子集,且集合B非空,根據(jù)端點值列不等式求解實數(shù)a的取值范圍.
解答:解:(1)要使f(x)有意義,則
5-x
x+1
-2>0
,解得-1<x<1,
所以A={x|-1<x<1},
要使g(x)有意義,則
x-a-1
2a-x
≥0
,因為a<1,解得:2a<x≤a+1,
所以B={x|2a<x≤a+1},
當a=-
1
2
時,B={x|-1<x≤
1
2
},
所以A∩B={x|-1<x≤
1
2
};
(2)由B⊆A得:
2a≥-1
a+1<1
解得:-
1
2
≤a<0
,
所以使B⊆A的實數(shù)a的取值范圍[-
1
2
,0).
點評:本題主要考查集合的交集和子集概念,屬于基礎題.要正確處理兩集合的包含關系,必須對子集的概念有深刻的理解,善于抓住端點值的關系,正確列出相應等式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

記函數(shù)f(x)=
1-2x
的定義域為集合A,函數(shù)g(x)=lg[(x-a+1)(x-a-1)]的定義域為集合B.
(Ⅰ)求集合A;
(Ⅱ)若A∩B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記函數(shù)f(x)=
2-
x+7
x+2
的定義域為A,g(x)=lg[(2x-a)(ax+1)]的定義域為B.
(1)求A;  
(2)若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•上海模擬)記函數(shù)f(x)=
2-
x+7
x+2
的定義域為A,g(x)=lg[(2x-b)(ax+1)](b>0,a∈R)的定義域為B,
(1)求A:
(2)若A⊆B,求a、b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記函數(shù)f(x)=lg(2x-3)的定義域為集合M,函數(shù)g(x)=的定義域為集合N.求集合M,N; 集合M∩N.M∪N.

查看答案和解析>>

同步練習冊答案