【題目】各棱長都等于4的四面ABCD中,設(shè)G為BC的中點,E為△ACD內(nèi)的動點(含邊界),且GE∥平面ABD,若 =1,則| |= .
【答案】
【解析】解:連接CE,并延長交AD于F,連接BF,由EG∥平面ABD,EG平面BCF,平面BCF∩平面ABD=BF,
可得EG∥BF,由G為BC的中點,可得E為CF的中點,
設(shè)AF=t,則 = ( + )= ( + ),
在四面體ABCD中, = = =4×4× =8,
= ( + )( ﹣ )
= ( ﹣ + 2﹣ )
= (8﹣8+ 16﹣ 8)=1,
解得t=1,即 = ( + ),
可得| |2= ( 2+ 2+ )
= ×(16+ ×16+ ×8)= ,
可得| |= .
故答案為: .
連接CE,并延長交AD于F,連接BF,運用線面平行的性質(zhì)定理可得EG∥BF,由G為BC的中點,可得E為CF的中點,設(shè)AF=t,再由向量的中點的向量表示,結(jié)合向量的數(shù)量積的性質(zhì),解得t=1,再由向量的模的公式,計算即可得到所求值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (m>0)的最大值為2.
(1)求函數(shù),f(x)在[0,π]上的單調(diào)遞減區(qū)間;
(2)△ABC中,a,b,c分別是角A,B,C所對的邊,C=60°,c=3,且 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2022年,將在北京和張家口兩個城市舉辦第24屆冬奧會.某中學(xué)為了普及奧運會知識和提高學(xué)生參加體育運動的積極性,舉行了一次奧運知識競賽.隨機抽取了30名學(xué)生的成績,繪成如圖所示的莖葉圖,若規(guī)定成績在75分以上(包括75分)的學(xué)生定義為甲組,成績在75分以下(不包括75分)定義為乙組.
(1)在這30名學(xué)生中,甲組學(xué)生中有男生7人,乙組學(xué)生中有女生12人,試問有沒有90%的把握認為成績分在甲組或乙組與性別有關(guān);
(2)①如果用分層抽樣的方法從甲組和乙組中抽取5人,再從這5人中隨機抽取2人,那么至少有1人在甲組的概率是多少?
②用樣本估計總體,把頻率作為概率,若從該地區(qū)所有的中學(xué)(人數(shù)很多)中隨機選取3人,用表示所選3人中甲組的人數(shù),試寫出的分布列,并求出的數(shù)學(xué)期望.
附: ;其中
獨立性檢驗臨界表:
0.100 | 0.050 | 0.010 | |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系.若曲線C的極坐標方程為ρsin2θ+4sinθ﹣ρ=0,直線l: (t為參數(shù))過曲線C的焦點,且與曲線C交于M,N兩點.
(1)寫出曲線C及直線l直角坐標方程;
(2)求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A,B,C是雙曲線 =1(a>0,b>0)上的三個點,AB經(jīng)過原點O,AC經(jīng)過右焦點F,若BF⊥AC且|BF|=|CF|,則該雙曲線的離心率是( )
A.
B.
C.
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與雙曲線有相同的焦點,點是曲線與的一個公共點,,分別是和的離心率,若,則的最小值為( )
A. B. 4 C. D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)對(x,y),設(shè)映射f:(x,y)→( , ),并定義|(x,y)|= ,若|f[f(f(x,y))]|=4,則|(x,y)|的值為( )
A.4
B.8
C.16
D.32
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2(a>0),點A(5,0),P(1,a),若存在點Q(k,f(k))(k>0),要使 =λ( + )(λ為常數(shù)),則k的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直三棱柱ABC﹣A1B1C1中,∠BAC=120°,AB=AC=1,AA1=2,若棱AA1在正視圖的投影面α內(nèi),且AB與投影面α所成角為θ(30°≤θ≤60°),設(shè)正視圖的面積為m,側(cè)視圖的面積為n,當θ變化時,mn的最大值是( )
A.2
B.4
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com