17.過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F作漸近線的垂線,設(shè)垂足為P(P為第一象限的點(diǎn)),延長(zhǎng)FP交拋物線y2=2px(p>0)于點(diǎn)Q,其中該雙曲線與拋物線有一個(gè)共同的焦點(diǎn),若$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OQ}$),則雙曲線的離心率的平方為$\frac{\sqrt{5}+1}{2}$.

分析 由$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OQ}$),可得P為FQ的中點(diǎn),設(shè)F(c,0),一條漸近線方程和垂直的垂線方程,求得交點(diǎn)P的坐標(biāo),由中點(diǎn)坐標(biāo)公式可得Q的坐標(biāo),代入拋物線的方程,結(jié)合離心率公式,解方程可得所求值.

解答 解:由$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OQ}$),可得P為FQ的中點(diǎn),
設(shè)F(c,0),由漸近線方程y=$\frac{a}$x,①
可設(shè)直線FP的方程為y=-$\frac{a}$(x-c),②
由①②解得P($\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
由中點(diǎn)坐標(biāo)公式可得Q($\frac{2{a}^{2}}{c}$-c,$\frac{2ab}{c}$),
代入拋物線的方程可得$\frac{4{a}^{2}^{2}}{{c}^{2}}$=2p•($\frac{2{a}^{2}}{c}$-c),③
由題意可得c=$\frac{p}{2}$,即2p=4c,
③即有c4-a2c2-a4=0,
由e=$\frac{c}{a}$,可得e4-e2-1=0,
解得e2=$\frac{\sqrt{5}+1}{2}$.
故答案為:$\frac{{\sqrt{5}+1}}{2}$.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用雙曲線的漸近線方程和中點(diǎn)坐標(biāo)公式,以及點(diǎn)滿足拋物線的方程,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)橢圓C1:$\frac{{x}^{2}}{2}$+y2=1的右焦點(diǎn)為F,動(dòng)圓過(guò)點(diǎn)F且與直線x+1=0相切,M(3,0),設(shè)動(dòng)圓圓心的軌跡為C2
(1)求C2的方程;
(2)過(guò)F任作一條斜率為k1的直線l,l與C2交于A,B兩點(diǎn),直線MA交C2于另一點(diǎn)C,直線MB交C2于另一點(diǎn)D,若直線CD的斜率為k2,問(wèn),$\frac{{k}_{1}}{{k}_{2}}$是否為定值?若是,求出這個(gè)定值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知關(guān)于x的方程x2+2alog2(x2+2)+a2-2=0有唯一解,則實(shí)數(shù)a的值為$\sqrt{3}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.將g(x)=cos(2x+$\frac{π}{6}$)的圖象向右平移$\frac{π}{6}$個(gè)單位后得到函數(shù)f(x)=sin(2x+φ)(|φ|<π)的圖象,則φ的值為( 。
A.-$\frac{2π}{3}$B.-$\frac{π}{3}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且滿足$\frac{2a-b}{c}$=$\frac{cosB}{cosC}$,
(1)求角C的大小;
(2)設(shè)函數(shù)f(x)=2sinxcosxcosC+2sin2xsinC-$\frac{\sqrt{3}}{2}$,求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=lnx+$\frac{a}{x}$,a∈R.
(Ⅰ)當(dāng)a=e(e為自然對(duì)數(shù)的底數(shù))時(shí),求f(x)的極小值;
(Ⅱ)討論函數(shù)g(x)=f′(x)-$\frac{x}{3}$零點(diǎn)的個(gè)數(shù);
(Ⅲ)若對(duì)任意m>n>0,$\frac{f(m)-f(n)}{m-n}$<1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}x-y≤0\\ x+y≥0\\ y≤3a\end{array}\right.$,且z=2x+3y的最大值是15,則實(shí)數(shù)a的值為( 。
A.5B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.由曲線y=$\frac{1}{x}$,直線x=1和x=2及x軸圍成的封閉圖形的面積等于ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,那么四棱錐D1-ABCD的體積是(  )
A.$\frac{1}{2}{a^3}$B.$\frac{1}{3}{a^3}$C.$\frac{1}{4}{a^3}$D.$\frac{1}{6}{a^3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案