(本小題滿分14分)設(shè)為奇函數(shù),為常數(shù).
(1)求的值;
(2)求的值;
(3)若對于區(qū)間[3,4]上的每一個的值,不等式>恒成立,求實數(shù)的取值范圍.
(1);
(2)
(3)。

試題分析:(1)因為f(x)為奇函數(shù),所以f(-x)+f(x)=0恒成立,從而可求出b的值。
(2)由(1)知,得這是求解此步的關(guān)鍵,然后再利用對數(shù)的運算法則求值即可。
(3) 對于區(qū)間[3,4]上的每一個的值,不等式>恒成立轉(zhuǎn)化為當恒成立,然后再構(gòu)造函數(shù):研究出h(x)是增函數(shù),從而可求出h(x)的最小值,問題得解。
(1)∵ 為奇函數(shù)
,即     …2分
,解得                     ………………………4分
顯然不成立,舍去。所以  ………………………………………5分
(2)由(1)知
……6分
………………………9分
(3)依題意 對于區(qū)間[3,4]上的每一個的值,不等式>恒成立
則 當恒成立…………………10分
         …………………11分
在[3,4]上單調(diào)遞增,單調(diào)遞減
所以在[3,4]上單調(diào)遞增    …………………………………………12分
∴ 只需即可
    所以    ……………………………………………14分
點評:根據(jù)函數(shù)的奇偶性確定式子中的參數(shù)值是常見題型。不等式恒成立的問題一般要考慮分離參數(shù),然后轉(zhuǎn)化為函數(shù)最值來研究。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知函數(shù) :
(1)寫出此函數(shù)的定義域和值域;
(2)證明函數(shù)在為單調(diào)遞減函數(shù);
(3)試判斷并證明函數(shù)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)
用定義法證明:函數(shù)在(1,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù)
(1) 求a的值;
(2) 證明的奇偶性;
(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)。
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)上是減函數(shù),則的取值范圍為    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)是在定義域上的單調(diào)遞減函數(shù),則的取值范圍為____     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的單調(diào)遞減區(qū)間為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)用定義證明:不論為何實數(shù)上為增函數(shù);
(2)若為奇函數(shù),求的值;
(3)在(2)的條件下,求在區(qū)間[1,5]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案