分析 取PB的中點O,推導出O為外接球的球心,從而得到外接球半徑R=$\frac{\sqrt{6}}{2}$,由此能求出結果.
解答 解:取PB的中點O,∵PA⊥平面ABC,
∴PA⊥AB,PA⊥BC,
又BC⊥AC,PC∩AC=A,∴BC⊥平面PAC,
∴BC⊥PC,∴OA=$\frac{1}{2}PB$,OC=$\frac{1}{2}$PB,
∴OA=OB=OC=OP,
∴O為外接球的球心,
又PA=2,AC=BC=1,
∴AB=$\sqrt{2}$,PB=$\sqrt{6}$,
∴外接球半徑R=$\frac{\sqrt{6}}{2}$,
∴${V}_{球}=\frac{4}{3}π{R}^{3}=\frac{4}{3}π×(\frac{\sqrt{6}}{2})^{3}$=$\sqrt{6}$π.
故答案為:$\sqrt{6}π$.
點評 本題考查三棱錐外接球的體積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
課程 | 數學1 | 數學2 | 數學3 | 數學4 | 數學5 | 合計 |
選課人數 | 180 | 540 | 540 | 360 | 180 | 1800 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源:2017屆安徽合肥一中高三上學期月考一數學(文)試卷(解析版) 題型:解答題
已知函數.
(1)當時,求曲線在點處的切線方程;
(2)討論函數的單調區(qū)間.
查看答案和解析>>
科目:高中數學 來源:2017屆安徽合肥一中高三上學期月考一數學(理)試卷(解析版) 題型:解答題
已知函數,,(為自然對數的底數),且曲線與在坐標原點處的切線相同.
(1)求的最小值;
(2)若時,恒成立,試求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2016-2017學年河北正定中學高二上月考一數學(文)試卷(解析版) 題型:選擇題
為了了解某學校1200名高中男生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況.根據所得數據畫出樣本的頻率分布直方圖,據此估計該校高中男生體重在的人數為( )
A.360 B.336 C.300 D.280
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com