已知方程x=3-lgx,下列說法正確的是

[  ]

A.方程x=3-lgx的解在區(qū)間(0,1)內(nèi)

B.方程x=3-lgx的解在區(qū)間(1,2)內(nèi)

C.方程x=3-lgx的解在區(qū)間(2,3)內(nèi)

D.方程x=3-lgx的解在區(qū)間(3,4)內(nèi)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有下列四個(gè)命題:
(1)一定存在直線l,使函數(shù)f(x)=lgx+lg
12
的圖象與函數(shù)g(x)=lg(-x)+2的圖象關(guān)于直線l對稱;
(2)在復(fù)數(shù)范圍內(nèi),a+bi=0?a=0,b=0
(3)已知數(shù)列an的前n項(xiàng)和為Sn=1-(-1)n,n∈N*,則數(shù)列an一定是等比數(shù)列;
(4)過拋物線y2=2px(p>0)上的任意一點(diǎn)M(x°,y°)的切線方程一定可以表示為y0y=p(x+x0).
則正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天河區(qū)三模)已知函數(shù)f(x)=
1+lg(x-1),x>1
g(x),x<1
的圖象關(guān)于點(diǎn)P對稱,且函數(shù)y=f(x+1)-1為奇函數(shù),則下列結(jié)論:
(1)點(diǎn)P的坐標(biāo)為(1,1);
(2)當(dāng)x∈(-∞,0)時(shí),g(x)>0恒成立;
(3)關(guān)于x的方程f(x)=a,a∈R有且只有兩個(gè)實(shí)根.
其中正確結(jié)論的題號為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①已知函數(shù)f(x)=(
1
2x-1
)•x2-sinx+a(a為常數(shù))
,且f(loga1000)=3,則f(lglg2)=3;
②若函數(shù)f(x)=lg(x2+ax-a)的值域是R,則a∈(-4,0);
③關(guān)于x的方程(
1
2
)x=lga
有非負(fù)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(1,10);
④如圖,三棱柱ABC-A1B1C1中,E、F分別是AB,AC的中點(diǎn),平面EB1C1F將三棱柱分成幾何體AEF-AB1C1和B1C1-EFCB兩部分,其體積分別為V1,V2,則V1:V2=7:5.
其中正確命題的序號是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=lg(ax2-2x+2).
(1)若函數(shù)y=lg(ax2-2x+2)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)若a=1且x≤1,求y=lg(ax2-2x+2)的反函數(shù)f-1(x);
(3)若方程lg(ax2-2x+2)=1在[
12
,2]
內(nèi)有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg
2x
ax+b
,f(1)=0
,當(dāng)x>0時(shí),恒有f(x)-f(
1
x
)=lgx

(1)求f(x)的表達(dá)式;
(2)設(shè)不等式f(x)≤lgt的解集為A,且A⊆(0,4],求實(shí)數(shù)t的取值范圍.
(3)若方程f(x)=lg(8x+m)的解集為∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案