7.用輾轉(zhuǎn)相除法求242與154的最大公約為22.

分析 利用輾轉(zhuǎn)相除法即可得出.

解答 解:242=154×1+88,
154=88×1+66,
88=66×1+22.
66=22×3.
故242與154的最大公約數(shù)是22.

點(diǎn)評(píng) 本題考查了輾轉(zhuǎn)相除法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=x3-2x2+x,將函數(shù)y=|f(x)|的圖象沿著x軸作對(duì)稱變換得到函數(shù)y=g(x)的圖象,函數(shù)h(x)=$\left\{\begin{array}{l}g(x),x<1\\ lnx,x≥1\end{array}$,若關(guān)于x的不等式h(x)-kx≤0在R上恒成立,則實(shí)數(shù)k的取值范圍是( 。
A.$[{\frac{1}{e^2},1}]$B.$[{\frac{2}{e},1}]$C.$[{\frac{1}{e},1}]$D.[1,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=3sin (2x-$\frac{π}{3}$) 的圖象為C.
①圖象C關(guān)于直線x=$\frac{11}{12}$π對(duì)稱;
②函數(shù)f(x)在區(qū)間(-$\frac{π}{12}$,$\frac{5π}{12}$) 內(nèi)是增函數(shù);
③由y=3sin 2x的圖象向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度可以得到圖象C.
以上三個(gè)論斷中,正確論斷的個(gè)數(shù)是( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.兩個(gè)好朋友相約周天在9點(diǎn)到10點(diǎn)到銀川市圖書館看書,先到者等候另一個(gè)人20分鐘方可離去.試求這兩人能會(huì)面的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某市在“兩會(huì)”召開前,某政協(xié)委員針對(duì)自己提出的“環(huán)保提案”對(duì)某處的環(huán)境狀況進(jìn)行了實(shí)地調(diào)研,據(jù)測(cè)定,該處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源的距離成反比,比例常數(shù)為k(k>0).現(xiàn)已知相距36km的A,B兩家化工廠(污染源)的污染強(qiáng)度分別為正數(shù)a,b,它們連線上任意一點(diǎn)c處的污染指數(shù)y等于兩化工廠對(duì)該處的污染指數(shù)之和.
(1)設(shè)A,C兩處的距離為x,試將y表示為x的函數(shù);
(2)若a=1時(shí),y在x=6處取最小值,試求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)函數(shù)$f(\frac{1}{x})={x^2}-\frac{2}{x}+lnx(x>0)$,則f'(1)=( 。
A.2B.-2C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=xn,若f′(-1)=3,則n的值為( 。
A.3B.-4C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=2a,b=4,cosB=$\frac{1}{4}$.則邊c的長(zhǎng)度為(  )
A.4B.2C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-2elnx.(e為自然對(duì)數(shù)的底數(shù))
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)的圖象在(1,f(1))處的切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案