19.已知函數(shù)f(x)=2sin(ωx-$\frac{5π}{6}$)+2$\sqrt{3}$sinωx的最小正周期T=π
(1)求出ω的值;
(2)求f(x)得單調(diào)區(qū)間.

分析 (1)利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的周期性求得ω的值.
(2)根據(jù)f(x)的解析式,利用正弦函數(shù)的單調(diào)性,求得f(x)的單調(diào)區(qū)間.

解答 解:(1)∵函數(shù)f(x)=2sin(ωx-$\frac{5π}{6}$)+2$\sqrt{3}$sinωx=2sinωx•(-$\frac{\sqrt{3}}{2}$)-2cosωx•$\frac{1}{2}$+2$\sqrt{3}$sinωx
=$\sqrt{3}$sinωx-cosωx=2sin(ωx-$\frac{π}{6}$) 的最小正周期T=|$\frac{2π}{ω}$|=π,∴ω=±2.
(2)①當(dāng)ω=2時(shí),f(x)=2sin(2x-$\frac{π}{6}$),令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2x+$\frac{π}{2}$,求得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,
可得函數(shù)的增區(qū)間為[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.
同理,令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2x+$\frac{3π}{2}$,求得kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,可得函數(shù)的減區(qū)間為[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],k∈Z.
②當(dāng)ω=-2,f(x)=2sin(-2x-$\frac{π}{6}$)=-2sin(2x+$\frac{π}{6}$),令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2x+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,
可得函數(shù)的減區(qū)間為[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
同理,令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2x+$\frac{3π}{2}$,求得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,可得函數(shù)的增區(qū)間為[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.

點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的周期性、單調(diào)性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知二次函數(shù)f(x)=ax2+bx,g(x)=2x-1.
(1)當(dāng)a=1時(shí),若函數(shù)f(x)的圖象恒在函數(shù)g(x)的圖象上方,試求實(shí)數(shù)b 的取值范圍;
(2)若y=f(x)對(duì)任意的x∈R均有f(x-2)=f(-x)成立,且f(x)的圖象經(jīng)過(guò)  點(diǎn)A(1,$\frac{2}{3}$).
①求函數(shù)y=f(x)的解析式;
②若對(duì)任意x<-3,都有2k$\frac{f(x)}{x}$<g(x)成立,試求實(shí)數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知集合A={x|$\frac{x-5}{x+1}$<0,x∈R},B={x|x2-2x-m<0,x∈R}
(1)當(dāng)m=3時(shí),求A∩(∁RB);
(2)若A∩B={x|-1<x<4},求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.(1)${(2\frac{1}{4})^{\frac{1}{2}}}-{(-0.96)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(\frac{3}{2})^{-2}}+{[{(-\root{3}{2})^{-4}}]^{-\frac{3}{4}}}$
(2)已知14a=6,14b=7,用a,b表示log4256.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,多面體ABCDS中,面ABCD為矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,$SD=\sqrt{3}AD$.
(1)求多面體ABCDS的體積;
(2)求二面角A-SB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求下列各式的值:
(1)2log510+log50.25;
(2)${({\frac{8}{125}})^{-\frac{1}{3}}}-{({-\frac{3}{5}})^0}+{16^{0.75}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.給出以下四個(gè)命題:①若a>b,則$\frac{1}{a}$<$\frac{1}$;②若ac2>bc2,則a>b③若a>|b|,則a>b;④若a>b,則a2>b2.其中正確的是(  )
A.②④B.①③C.①②D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,四棱錐P-ABCD中,∠ABC=∠BAD=90℃,BC=2AD,△PAB與△PAD都是等邊三角形,平面ABCD⊥平面PBD.
(I)證明:CD⊥平面PBD;
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)y=f(x)是R上的偶函數(shù),且在(-∞,0]上是增函數(shù),若$f(a)≥f(\frac{1}{3})$,則a的取值范圍是( 。
A.$a≥\frac{1}{3}$B.$a≤-\frac{1}{3}$C.$-\frac{1}{3}≤a≤\frac{1}{3}$D.$a≥\frac{1}{3}$或$a≤-\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案