已知橢圓E的中心是坐標原點,焦點在坐標軸上,且橢圓過點A(-2,0),B(2,0),C(1,)三點.

(1)求橢圓E的方程;

(2)若點D為橢圓E上不同于A,B的任意一點,F(xiàn)(-1,0),H(1,0),當△DFH內(nèi)切圓的面積最大時,求內(nèi)切圓圓心的坐標;

(3)若直線l:y=k(x+4),(k≠0)與橢圓E交于M,N兩點,點M關于x軸的對稱點為P,試問直線PN能否過定點F(-1,0),若是,請證明;若不是,請說明理由

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓E的中心在坐標原點、對稱軸為坐標軸,且拋物線x2=-4
2
y
的焦點是它的一個焦點,又點A(1,
2
)
在該橢圓上.
(1)求橢圓E的方程;
(2)若斜率為
2
直線l與橢圓E交于不同的兩點B、C,當△ABC面積的最大值時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E的中心是坐標原點,焦點在坐標軸上,且橢圓過點A(-2,0),B(2,0),C(1,
32
)三點.
(1)求橢圓E的方程;
(2)若點D為橢圓E上不同于A,B的任意一點,F(xiàn)(-1,0),H(1,0),當△DFH內(nèi)切圓的面積最大時,求內(nèi)切圓圓心的坐標;
(3)若直線l:y=k(x+4),(k≠0)與橢圓E交于M,N兩點,點M關于x軸的對稱點為P,試問直線PN能否過定點F(-1,0),若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E的中心在坐標原點,焦點在x軸上,離心率為
12
,且橢圓E上一點到兩個焦點距離之和為4;l1,l2是過點P(0,2)且互相垂直的兩條直線,l1交E于A,B兩點,l2交E交C,D兩點,AB,CD的中點分別為M,N. 
(1)求橢圓E的方程;  
(2)求l1的斜率k的取值范圍;
(3)求證直線OM與直線ON的斜率乘積為定值(O為坐標原點)

查看答案和解析>>

科目:高中數(shù)學 來源:河北省衡水中學2011-2012學年高二上學期期中考試數(shù)學理科試題 題型:044

已知橢圓E的中心是坐標原點,焦點在坐標軸上,且橢圓過點A(-2,0),B(2,0),C(1,)三點.

(1)求橢圓E的方程;

(2)若點D為橢圓E上不同于A,B的任意一點,F(xiàn)(-1,0),H(1,0),求△DFH內(nèi)切圓的面積的最大值,并指出其內(nèi)切圓圓心的坐標.

查看答案和解析>>

同步練習冊答案