分析 利用x2-x=(x-$\frac{1}{2}$)2-$\frac{1}{4}$≥-$\frac{1}{4}$,結(jié)合反三角函數(shù)的定義,即可得出結(jié)論.
解答 解:∵x2-x=(x-$\frac{1}{2}$)2-$\frac{1}{4}$≥-$\frac{1}{4}$,
∴函數(shù)y=arcsin(x2-x)的值域為[-arcsin$\frac{1}{4}$,$\frac{π}{2}$].
故答案為:[-arcsin$\frac{1}{4}$,$\frac{π}{2}$].
點評 本題考查反三角函數(shù)的值域,考查學(xué)生的計算能力,正確理解反三角函數(shù)是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m+n=4 | B. | m-n=3 | C. | $\frac{m}{n}=7$ | D. | m•n=16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{2}{3}$,1] | B. | [0,1] | C. | [$\frac{2}{3}$,+∞) | D. | [1,+∞] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{6}$,$\frac{1}{6}$] | B. | [-$\frac{\sqrt{6}}{6}$,$\frac{\sqrt{6}}{6}$] | C. | [-$\frac{1}{3}$,$\frac{1}{3}$] | D. | [-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 圖象關(guān)于點$({-\frac{π}{6},0})$中心對稱 | B. | 圖象關(guān)于$x=-\frac{π}{6}$軸對稱 | ||
C. | 在區(qū)間$[{-\frac{5π}{12},-\frac{π}{6}}]$單調(diào)遞增 | D. | 在$[{-\frac{π}{12},\frac{5π}{12}}]$單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $-\frac{{\sqrt{2}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>