如圖,在四棱錐中,⊥底面,底面為梯形,,,,點在棱上,且

(1)求證:平面⊥平面;
(2)求平面和平面所成銳二面角的余弦值.
(1)見解析(2)

試題分析:(1)證明:∵底面,∴.又,
⊥平面, 又平面,∴平面⊥平面………………4分
(2)以為原點,所在直線分別為軸、軸,如圖建立空間直角坐標系.

,則,,,
為平面的一個法向量,則
,∴,
解得,∴
為平面的一個法向量,
,又,
,解得

∴平面和平面所成銳二面角的余弦值為…………………………10分
點評:空間向量引入立體幾何使立體幾何的思維量減少了很多,在解決立體幾何題目時效果明顯
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)在四棱錐中,平面,,,
.
(Ⅰ)證明;
(Ⅱ)求二面角的正弦值;
(Ⅲ)設為棱上的點,滿足異面直線所成的角為,求的長.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分13分)
在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E的棱AB上移動。
(I)證明:D1EA1D;
(II)AE等于何值時,二面角D1-EC-D的大小為。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)如右圖,簡單組合體ABCDPE,其底面ABCD為邊長為的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=.

(1)若N為線段PB的中點,求證:EN//平面ABCD;
(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果一條直線垂直于一個平面內(nèi)的①三角形的兩邊;②梯形的兩邊;③圓的兩條直徑;④正六邊形的兩條邊,則能保證該直線與平面垂直的是(  )
A.①③    B.②C.②④D.①②④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知兩條不同直線、,兩個不同平面,給出下列命題:
(1)若,,則;(2)若,,則
(3)若,則平行于內(nèi)的所有直線;(4)若;
(5)若在平面內(nèi)的射影互相垂直,則。
其中正確命題的序號是                (把你認為正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

有三個平面,β,γ,給出下列命題:
①若,β,γ兩兩相交,則有三條交線     ②若⊥β,⊥γ,則β∥γ
③若⊥γ,β∩=a,β∩γ=b,則a⊥b   ④若∥β,β∩γ=,則∩γ=
其中真命題是        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若直線不平行于平面,則下列結(jié)論成立的是(   )
A.平面內(nèi)的所有直線都與直線異面B.平面內(nèi)不存在與直線平行的直線
C.平面內(nèi)的直線都與直線相交D.平面內(nèi)必存在直線與直線垂直

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論錯誤的是
A.BD∥平面CB1D1B.AC1⊥BD
C.AC1⊥平面CB1D1D.異面直線AD與CB1角為60°

查看答案和解析>>

同步練習冊答案