【題目】2018年年底,三部進(jìn)口影片登錄銀屏,包括《海王》,《龍貓》和《蜘蛛俠》,經(jīng)過了解,電影比《蜘蛛俠》早上映一周,電影的票房比《龍貓》高,《蜘蛛俠》的票房比電影低,據(jù)此可以判斷( )
A.是《海王》,是《蜘蛛俠》,是《龍貓》
B.是《蜘蛛俠》,是《龍貓》,是《海王》
C.是《龍貓》,是《海王》,是《蜘蛛俠》
D.是《龍貓》,是《蜘蛛俠》,是《海王》
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅原理“冪勢(shì)既同,則積不容異”中的“冪”指面積,“勢(shì)”即是高,意思是:若兩個(gè)等高的幾何體在所有等高處的水平截面的面積恒等,則這兩幾何體的體積相等.設(shè)夾在兩個(gè)平行平面之間的幾何體的體積分別為,它們被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面面積分別為,則“恒成立”是“”的( )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了調(diào)查學(xué)生的學(xué)習(xí)情況,由每班隨機(jī)抽取名學(xué)生進(jìn)行調(diào)查,若一班有名學(xué)生,將每一學(xué)生編號(hào)從到,請(qǐng)從隨機(jī)數(shù)表的第行第、列(下表為隨機(jī)數(shù)表的前行)開始,依次向右,直到取足樣本,則第五個(gè)編號(hào)為_________.
7816 | 6514 | 0802 | 6314 | 0702 | 4369 | 9728 | 0198 |
3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
7816 | 6514 | 0802 | 6314 | 0702 | 4369 | 9728 | 0198 |
3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若四面體的三組對(duì)棱分別相等,即,,,則________.(寫出所有正確結(jié)論的編號(hào))
①四面體每個(gè)面的面積相等
②四面體每組對(duì)棱相互垂直
③連接四面體每組對(duì)棱中點(diǎn)的線段相互垂直平分
④從四面體每個(gè)頂點(diǎn)出發(fā)的三條棱的長(zhǎng)都可以作為一個(gè)三角形的三邊長(zhǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+|x+2|.
(1)若a=1.解不等式f(x)≤x2﹣1;
(2)若a>0,b>0,c>0.且f(x)的最小值為4﹣b﹣c.求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x-ax+(a-1),。
(1)討論函數(shù)的單調(diào)性;
(2)證明:若,則對(duì)任意x,x,xx,有。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx1,g(x)=x33tx+1(t>0).
(1)當(dāng)a時(shí),求f(x)在區(qū)間[,e]上的最值;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)若g(x)≤xex﹣m+2(e為自然對(duì)數(shù)的底數(shù))對(duì)任意x∈[0,+∞)恒成立時(shí)m的最大值為1,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x+1|﹣2|x﹣m|,m∈N,且f(x)<3恒成立.
(1)求m的值;
(2)當(dāng),時(shí),f(a)+f(b)=﹣2,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com