10.已知直線l:y=-x+3與橢圓C:mx2+ny2=1(n>m>0)有且只有一個(gè)公共點(diǎn)P(2,1).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若直線l′:y=-x+b交C于A,B兩點(diǎn),且PA⊥PB,求b的值.

分析 (I)聯(lián)立直線與橢圓方程,消去y,可得x的方程,運(yùn)用判別式為0,再將P的坐標(biāo)代入橢圓方程,解方程可得m,n,進(jìn)而得到橢圓方程;
(II)設(shè)A(x1,y1),B(x2,y2),聯(lián)立直線y=b-x和橢圓方程,消去y,可得x的方程,運(yùn)用判別式大于0,韋達(dá)定理,再由A,B在直線上,代入直線方程,由垂直的條件,運(yùn)用向量的數(shù)量積為0,化簡整理,解方程可得b的值.

解答 解:(I)聯(lián)立直線l:y=-x+3與橢圓C:mx2+ny2=1(n>m>0),
可得(m+n)x2-6nx+9n-1=0,
由題意可得△=36n2-4(m+n)(9n-1)=0,即為9mn=m+n,
又P在橢圓上,可得4m+n=1,
解方程可得m=$\frac{1}{6}$,n=$\frac{1}{3}$,
即有橢圓方程為$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1;
(II)設(shè)A(x1,y1),B(x2,y2),
聯(lián)立直線y=b-x和橢圓方程,可得3x2-4bx+2b2-6=0,
判別式△=16b2-12(2b2-6)>0,
x1+x2=$\frac{4b}{3}$,x1x2=$\frac{2^{2}-6}{3}$,
y1+y2=2b-(x1+x2)=$\frac{2b}{3}$,y1y2=(b-x1)(b-x2)=b2-b(x1+x2)+x1x2=$\frac{^{2}-6}{3}$,
由PA⊥PB,即為$\overrightarrow{PA}$•$\overrightarrow{PB}$=(x1-2)(x2-2)+(y1-1)(y2-1)
=x1x2-2(x1+x2)+4+y1y2-(y1+y2)+1
=$\frac{2^{2}-6}{3}$-2•$\frac{4b}{3}$+$\frac{^{2}-6}{3}$-$\frac{2b}{3}$+5=0,
解得b=3或$\frac{1}{3}$,代入判別式,b=3不成立.
則b=$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查橢圓方程的求法,注意運(yùn)用待定系數(shù)法和方程思想,考查直線和橢圓的位置關(guān)系,注意聯(lián)立方程組,運(yùn)用判別式和韋達(dá)定理,同時(shí)考查兩直線垂直的條件,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.我國南宋著名數(shù)學(xué)家秦九韶發(fā)現(xiàn)了從三角形三邊求三角形面積的“三斜公式”,設(shè)△ABC三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,面積為S,則“三斜求積”公式為$S=\sqrt{\frac{1}{4}[{{a^2}{c^2}-{{({\frac{{{a^2}+{c^2}-{b^2}}}{2}})}^2}}]}$.若a2sinC=4sinA,(a+c)2=12+b2,則用“三斜求積”公式求得△ABC的面積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如果實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x≥1\\ x-y+1≤0\\ 2x-y-2≤0\end{array}\right.$則目標(biāo)函數(shù)z=3x-2y的最大值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若$tana=\frac{1}{2}$,$tanb=\frac{1}{3}$,則tan(a+b)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$為同一平面內(nèi)兩個(gè)不共線的向量,且$\overrightarrow{AB}$=2$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$,$\overrightarrow{CB}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,若A、B、D三點(diǎn)共線,則k=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x-2,那么不等式$f(x)<\frac{1}{2}$的解集是( 。
A.$\left\{{x|0<x<\frac{5}{2}}\right\}$B.$\left\{{x|x<-\frac{3}{2}\;,\;\;或0≤x<\frac{5}{2}}\right\}$
C.$\left\{{x|-\frac{3}{2}<x<0\;,\;\;或0≤x<\frac{5}{2}}\right\}$D.$\left\{{x|-\frac{3}{2}<x<0}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=xlnx,e為自然對(duì)數(shù)的底數(shù).
(1)求曲線y=f(x)在x=e-2處的切線方程;
(2)關(guān)于x的不等式f(x)≥λ(x-1)在(0,+∞)上恒成立,求實(shí)數(shù)λ的值;
(3)關(guān)于x的方程f(x)=a有兩個(gè)實(shí)根x1,x2,求證:|x1-x2|<2a+1+e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.春節(jié)期間商場為活躍節(jié)日氣氛,特舉行“購物有獎(jiǎng)”抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為$\frac{2}{3}$,每次中獎(jiǎng)可以獲得20元購物代金券,方案乙的中獎(jiǎng)率為$\frac{2}{5}$,每次中獎(jiǎng)可以獲得30元購物代金券,未中獎(jiǎng)則不獲得購物代金券,每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,已知小明通過購物獲得了2次抽獎(jiǎng)機(jī)會(huì).
(1)若小明選擇方案甲、乙各抽獎(jiǎng)一次,記他累計(jì)獲得的購物代金券面額之和為X,求X≤30的概率;
(2)設(shè)小明兩次抽獎(jiǎng)都選擇方案甲或都選擇方案乙,且都選擇方案乙時(shí),已算得,累計(jì)獲得的購物代金券面額之和X1的數(shù)學(xué)期望E(X1)=24,問:小明選擇這兩種方案中的何種方案抽獎(jiǎng),累計(jì)獲得的購物代金券面額之和的數(shù)學(xué)期望較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知x,y滿足$\left\{\begin{array}{l}y≤-|x|+2\\ x+2y+2≥0\end{array}\right.$,則z=x-2y的最大值為14.

查看答案和解析>>

同步練習(xí)冊(cè)答案