已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)a1=2,Sn為其前n項(xiàng)和,若5S1,S3,3S2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,cn=,記數(shù)列{cn}的前n項(xiàng)和Tn.若對(duì)?n∈N*,Tn≤k(n+4)恒成立,求實(shí)數(shù)k的取值范圍.
(1)an=2n(2)
【解析】(1)設(shè)數(shù)列{an}的公比為q,∵5S1,S3,3S2成等差數(shù)列,
∴2S3=5S1+3S2,即2(a1+a1q+a1q2)=5a1+3(a1+a1q),
化簡(jiǎn)得2q2-q-6=0,解得q=2或q=-.
因?yàn)閿?shù)列{an}的各項(xiàng)均為正數(shù),所以q=-不合題意,
所以數(shù)列{an}的通項(xiàng)公式為an=2n.
(2)由bn=log2an得bn=log22n=n,
則cn===-,
Tn=1-+-+…+-=1-=.
∵≤k(n+4),∴k≥=.
∵n++5≥2+5=9,當(dāng)且僅當(dāng)n=,即n=2時(shí)等號(hào)成立,
∴≤,因此k≥,故實(shí)數(shù)k的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集15講練習(xí)卷(解析版) 題型:解答題
已知橢圓C:=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1,F2,離心率為,且過(guò)點(diǎn)(2,).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)M,N,P,Q是橢圓C上的四個(gè)不同的點(diǎn),兩條都不和x軸垂直的直線MN和PQ分別過(guò)點(diǎn)F1,F2,且這兩條直線互相垂直,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集13講練習(xí)卷(解析版) 題型:選擇題
設(shè)過(guò)點(diǎn)(0,b)且斜率為1的直線與圓x2+y2+2x=0相切,則b的值為( )
A.2± B.2±2 C.1± D.±1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集11講練習(xí)卷(解析版) 題型:填空題
如圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,E,F分別為線段AA1,B1C上的點(diǎn),則三棱錐D1-EDF的體積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集11講練習(xí)卷(解析版) 題型:選擇題
某四棱錐的底面為正方形,其三視圖如圖所示,則該四棱錐的體積等于( )
A.1 B.2 C.3 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集10講練習(xí)卷(解析版) 題型:填空題
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=5,S9=99,則數(shù)列的前n項(xiàng)和Tn=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集10講練習(xí)卷(解析版) 題型:選擇題
若數(shù)列{cn}的通項(xiàng)cn=(2n-1)·,則數(shù)列{cn}的前n項(xiàng)和Rn=( )
A.1- B.1- C.1+ D.1+
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-5不等式選講 練習(xí)卷(解析版) 題型:填空題
已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點(diǎn)M恰好是AC的中點(diǎn),又∠CAD=30°,PA=AB=4,點(diǎn)N在線段PB上,且=.
(1)求證:BD⊥PC;
(2)求證:MN∥平面PDC;
(3)設(shè)平面PAB∩平面PCD=l,試問(wèn)直線l是否與直線CD平行,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com