分析 (1)根據(jù)絕對值不等式|a+b|≥|a-b|便可得出|x+3|+|x-1|≥4,從而得出f(x)的最小值為4,即得到t=4;
(2)利用柯西不等式即可證明.
解答 (1)解f(x)=|x-5|+|x-3|≥|(x-5)-(x-3)|=2;
∴f(x)的最小值m為2;
(2)證明:∵a>0,b>0,$\frac{1}{a}$+$\frac{1}$=$\sqrt{3}$,
∴($\frac{1}{{a}^{2}}$+$\frac{2}{^{2}}$)[${1}^{2}+(\frac{1}{\sqrt{2}})^{2}$]≥$(\frac{1}{a}×1+\frac{\sqrt{2}}×\frac{1}{\sqrt{2}})^{2}$=3≥2.
點評 考查絕對值不等式公式:|a|+|b|≥|a-b|,以及柯西不等式的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1 | B. | f(x)=|x|,g(x)=($\sqrt{x}$)2 | ||
C. | f(x)=x,g(x)=$\root{3}{{x}^{3}}$ | D. | f(x)=1,g(x)=x0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com