給出下列四個命題中:
①底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
②與不共面的四點距離都相等的平面共有4個.
③正四棱錐側(cè)面為銳角三角形;
④橢圓中,離心率e趨向于0,則橢圓形狀趨向于扁長.
其中所有真命題的序號是
分析:①根據(jù)正三棱錐的定義判斷.
②四個點在平面同側(cè)不可能存在與空間不共面四點距離相等的平面,那么可分為一個點在平面一側(cè),另三個點在另一側(cè),中截面滿足條件,這樣的情形有4個,還有一類是二個點在平面一側(cè),另兩個點在另一側(cè),這樣滿足條件的平面有三個,即可求出所有滿足條件的平面.
③可由側(cè)面中等腰三角形定義分析,三角形底角不會為鈍角,若頂角為鈍角,則構(gòu)不成正四棱錐.
④在橢圓中,e越接近于1,則c越接近于a,從而b越小,因此,橢圓越扁;反之,e越接近于0,c越接近于0,從而b越接近于a,這時橢圓就接近于圓.所以橢圓離心率越大,它越扁.利用此規(guī)律即可得出結(jié)論.
解答:解:①顯然不對,比如三條側(cè)棱中僅有一條不與底面邊長相等的情況,側(cè)面都是等腰三角形的三棱錐但不是正三棱錐.
②一個點在平面一側(cè),另三個點在另一側(cè),這樣滿足條件的平面有四個,都是中截面,如圖,二個點在平面一側(cè),另兩個點在另一側(cè),這樣滿足條件的平面有三個,如圖,
故與不共面的四點距離都相等的平面共有7個;故②錯;
③側(cè)面三角形底角不會為鈍角,若頂角為鈍角,則構(gòu)不成正四棱錐,所以是銳角三角形,故③正確.
④橢圓中,離心率e趨向于0,這時橢圓就接近于圓,故④錯.
故答案為:③.
點評:本題主要考查命題的真假判斷與應(yīng)用,棱錐的結(jié)構(gòu)特征及棱錐的分類、橢圓的幾何性質(zhì)等,考查很全面,要求掌握要熟練,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、已知直線l,m,平面α,β且l⊥α,m?β,給出下列四個命題中,正確命題的個數(shù)為( 。
(1)若α∥β,則l⊥m(2)若l⊥m,則α∥β(3)若α⊥β,則l⊥m(4)若l∥m,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題中:
①平行于同一條直線的兩條直線平行;
②平行于同一平面的兩個平面平行;
③垂直于同一條直線的兩條直線平行; 
④垂直于同一平面的兩條直線平行;
其中正確命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)l,m,n表示三條不同的直線,α,β,γ表示三個不同的平面,給出下列四個命題中真命題的個數(shù)為( 。
①若l∥α,m∥l,m⊥β,則α⊥β;
②若m⊥α,m⊥n,則n∥α;
③若m,n為異面直線,m∥α,n∥α,m∥β,n∥β,則α∥β;
④若α⊥β,α⊥γ,則γ⊥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題中:
①命題“若x≥2且y≥3,則x+y≥5”為假命題.
②命題“若x2-4x+3=0,則x=3”的逆否命題為:“若x≠3,則x2-4x+30≠0”.
③“x>1”是“|x|>0”的充分不必要條件
④關(guān)于x的不等式|x+1|+|x-3|≥m的解集為R,則m≤4.
其中所有正確命題的序號是
②③④
②③④

查看答案和解析>>

同步練習(xí)冊答案