已知x2+y2-4x-2y-4=0,求
2x+3y+3
x+3
的最大值( 。
A、2
B、
17
4
C、
29
5
D、
13
4
13
考點:基本不等式
專題:不等式的解法及應用
分析:利用圓的參數(shù)方程與直線的斜率計算公式轉化為直線與圓的相交直線的斜率計算問題即可得出.
解答: 解:∵x2+y2-4x-2y-4=0,∴(x-2)2+(y-1)2=9,
令x=2+3cosθ,y=1+3sinθ,
2x+3y+3
x+3
=
10+6cosθ+9sinθ
5+3cosθ
=
9sinθ
5+3cosθ
+2,
令k=
3sinθ-0
3cosθ-(-5)
,則k表示直線y=k(x+5)與圓x2+y2=9由公共點,
|5k|
1+k2
≤3,解得|k|≤
3
4
,
取k=
3
4
時,
2x+3y+3
x+3
取得最大值
3
4
+2=
17
4

2x+3y+3
x+3
的最大值為
17
4

故選:B.
點評:本題考查了圓的參數(shù)方程、直線的斜率計算公式、直線與圓的相交直線的斜率計算問題,考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在如圖所示的幾何體中,四邊形BB1C1C是長方形,BB1⊥AB,CA=CB,
A1B1∥AB,AB=2A1B1,E,F(xiàn)分別是AB,AC1的中點.
(1)求證:EF∥平面BB1C1C;
(2)求證:平面C1AA1⊥平面ABB1A1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(Ⅰ) 若α,β∈[0,2π],用向量法證明cos(α-β)=cosαcosβ+sinαsinβ;
(Ⅱ) 若向量
a
=(sinθ,-2)與
b
=(1,cosθ)互相垂直,且sin(θ-φ)=
10
10
其中θ∈(0,
π
2
),φ∈(0,
π
2
)求cosφ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>b>c>0,則a2+
1
bc
+
1
a(a-b)
+
1
b(a-c)
的最小值為(  )
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一次射箭比賽中,某運動員5次射箭的環(huán)數(shù)依次是9,10,9,7,10,則該組數(shù)據(jù)的方差是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAC=90°,O為AC的中點,PO⊥底面ABCD.
(Ⅰ)求證:AD⊥平面PAC;
(Ⅱ)在線段PB上是否存在一點M,使得OM∥平面PAD?若存在,寫出證明過程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+ax+3-a,若x∈[-2,2]時,f(x)≥0恒成立,求a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線mx+ny+1=0與圓x2+y2=1相切,則2m+n的最大值為(  )
A、2
B、
3
2
2
C、
5
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),如果函數(shù)y=f(x)-g(x)在區(qū)間[a,b]上有k(k∈N*)個不同的零點,那么稱函數(shù)f(x)和g(x)在區(qū)間[a,b]上為“k階關聯(lián)函數(shù)”.現(xiàn)有如下三組函數(shù):
①f(x)=x,g(x)=sin
π
2
x;
②f(x)=2-x,g(x)=lnx;     
③f(x)=|x-1|,g(x)=
x

其中在區(qū)間[0,4]上是“2階關聯(lián)函數(shù)”的函數(shù)組的序號是
 
.(寫出所有滿足條件的函數(shù)組的序號)

查看答案和解析>>

同步練習冊答案