(09年湖北鄂州5月模擬理)已知兩定點(diǎn)A(-3,0),B(3,0),動(dòng)圓M與直線AB相切于點(diǎn)N,且,現(xiàn)分別過點(diǎn)AB作動(dòng)圓M的切線(異于直線AB),兩切線相交于點(diǎn)P

⑴求動(dòng)點(diǎn)P的軌跡方程;

⑵若直線xmy3=0截動(dòng)點(diǎn)P的軌跡所得的弦長(zhǎng)為5,求m的值;

    ⑶設(shè)過軌跡上的點(diǎn)P的直線與兩直線分別交于點(diǎn)P1、P2,且點(diǎn)P分有向線段所成的比為λ(λ>0),當(dāng)λ∈時(shí),求的最值.

解析:⑴由題設(shè)及平面幾何知識(shí)得

∴動(dòng)點(diǎn)P的軌跡是以A、B為焦點(diǎn)的雙曲線右支由,

b2c2a2=5,故所求P點(diǎn)的軌跡方程為                3分

⑵易知直線xmy3=0恒過雙曲線焦點(diǎn)B(3,0)

設(shè)該直線與雙曲線右支相交于D(xD,yD),E(xE,yE)由雙曲線第二定義知

,又a=2,c=3,

e                                                               5分

由|DE|=5,得,從而易知僅當(dāng)m=0時(shí),滿足|DE|=5

故所求m=0                                                                                           7分

⑶設(shè)P(x,y),P1(x1、y1),P2(x2、y2)且P分有向線段所成的比為λ,則

,又點(diǎn)P(x,y)在雙曲線

上,∴,化簡(jiǎn)得,

,,∴         9分

  ∵上單減,在上單增,

    ∴上單減,在上單增,∴uminu(1)=4,

,    ∴umin

的最小值為9,最大值為。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北鄂州5月模擬理)(12分)已知函數(shù)

⑴求f (x)的最值;

⑵若不等式<2在上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北鄂州5月模擬理)(12分)如圖,已知四棱錐PABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60o,E、F 分別是BC、PC的中點(diǎn).

⑴證明:AEPD

⑵若HPD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的正
切值為,求二面角EAFC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北鄂州5月模擬理)(14分)設(shè)函數(shù)

⑴求f (x)的單調(diào)區(qū)間和極值;

⑵是否存在實(shí)數(shù)a,使得關(guān)于x的不等式f (x)≥a的解集為(0,+∞)?若存在,求a的取值范圍;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北鄂州5月模擬文)(13分)設(shè)f (x)=,方程f (x)=x有唯一解,數(shù)列{xn}滿足f (x1)=1,
xn+1f (xn)(nN*).

⑴求數(shù)列{xn}的通項(xiàng)公式;

    ⑵已知數(shù)列{an}滿足,,求證:對(duì)一切n≥2的正整數(shù)都滿足

查看答案和解析>>

同步練習(xí)冊(cè)答案