9.復數(shù)z=1+i+i2+i3的值是( 。
A.-1B.0C.1D.i

分析 根據(jù)復數(shù)的i的性質(zhì)進行求解即可.

解答 解:z=1+i+i2+i3=1+i-1-i=0,
故選:B

點評 本題主要考查復數(shù)的計算,根據(jù)i2=-1,結(jié)合指數(shù)冪的運算法則是解決本題的關(guān)鍵.比較基礎.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知圓E的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,取相同單位長度(其中ρ≥0,θ∈[0,2π)).
(1)直線l過原點,且它的傾斜角α=$\frac{3π}{4}$,求l與圓E的交點A的極坐標(點A不是坐標原點);
(2)直線m過線段OA中點M,且直線m交圓E于B、C兩點,求|MB|•|MC|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在銳角三角形ABC中,角A、B、C所對的邊分別為a、b、c且$\sqrt{3}$(tanA-tanB)=1+tanA•tanB.
(1)求A-B的大;
(2)已知$\frac{π}{6}$<B<$\frac{π}{3}$,向量$\overrightarrow{m}$=(sinA,cosA),$\overrightarrow{n}$=(cosB,sinB),求|3$\overrightarrow{m}$-2$\overrightarrow{n}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.三棱錐P-ABC中,△ABC為等邊三角形,PA=PB=PC=1,PA⊥PB,三棱錐P-ABC的外接球的表面積為( 。
A.12πB.C.$\frac{π}{6}$D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知數(shù)列{an}是等差數(shù)列a1=1,a5=13,設Sn為數(shù)列{(-1)nan}的前n項和,則S2016=( 。
A.2016B.-2016C.3024D.-3024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知拋物線y2=2px(p>0)的準線與圓(x-2)2+y2=16相切,則p=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知命題p:函數(shù)f(x)=2ax2-x-1(a≠0)在(0,1)內(nèi)恰有一個零點; 命題q:函數(shù)y=x2-a在(0,+∞)上是減函數(shù),若p且¬q為真命題,則實數(shù)a的取值范圍是(1,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.從某校隨機選取5名高三學生,其身高與體重的數(shù)據(jù)如下表所示:
身高x/cm165168170172175
體重y/kg4951556169
根據(jù)上表可得回歸直線$\stackrel{∧}{y}$=2x-a.則預測身高為180cm的學生的體重為( 。
A.73kgB.75kgC.77kgD.79kg

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知圓O:x2+y2=4,圓M:(x-8)2+(y-6)2=4,在圓M上任取一點P,向圓O作切線PA,PB,切點為A,B,則$\overrightarrow{OA}•\overrightarrow{OB}$的最大值為( 。
A.$-\frac{5}{2}$B.$-\frac{9}{2}$C.$\frac{3}{2}$D.$-\frac{7}{2}$

查看答案和解析>>

同步練習冊答案