已知雙曲線C1-=1的左準線l,左右焦點分別為F1、F2,拋物線C2的準線為l,焦點為F2,P是C1與C2的一個交點,則|PF2|=( )
A.40
B.32
C.8
D.9
【答案】分析:由題設條件知a=3,b=4,c=5,如圖,設|PF2|=m,根據(jù)拋物線的定義出P到左準線l的距離,再根據(jù)雙曲線的定義得:,代入a,b,c的值即可求出m.
解答:解:由題設條件知a=3,b=4,c=5,
如圖,
設|PF2|=m,
根據(jù)拋物線的定義得:P到左準線l的距離為m,
則P到左準線l的距離為m-,
根據(jù)雙曲線的定義得:
代入a,b,c的值得:⇒m=9,
故選D.
點評:本題考查圓錐曲線的綜合應用,解題時要認真審題,注意公式的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知雙曲線C1
y2
m
-
x2
n
=1(m>0,n>0),圓C2:(x-2)2+y2=2,雙曲線C1的兩條漸近線與圓C2相切,且雙曲線C1的一個頂點A與圓心C2關(guān)于直線y=x對稱,設斜率為k的直線l過點C2
(1)求雙曲線C1的方程;
(2)當k=1時,在雙曲線C1的上支上求一點P,使其與直線l的距離為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•天津模擬)已知雙曲線C1
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點分別為F1、F2,拋物線C2的頂點在原點,它的準線與雙曲線C1的左準線重合,若雙曲線C1與拋物線C2的交點P滿足PF2⊥F1F2,則雙曲線C1的離心率為
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣西模擬)已知雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1、F2,拋物線C2y2=2px(p>0)與雙曲線C1共焦點,C1與C2在第一象限相交于點P,且|F1F2|=|PF1|,則雙曲線的離心率為
2+
3
2+
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C1的漸近線方程是y=±
3
3
x,且它的一條準線與漸近線y=
3
3
x及x軸圍成的三角形的周長是
3
2
(1+
3
)
.以C1的兩個頂點為焦點,以C1的焦點為頂點的橢圓記為C2
(1)求C2的方程;
(2)已知斜率為
1
2
的直線l經(jīng)過定點P(m,0)(m>0)并與橢圓C2交于不同的兩點A、B,若對于橢圓C2上任意一點M,都存在θ∈[0,2π],使得
OM
=cosθ•
OA
+sinθ•
OB
成立.求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C1
x2
a2
-
y2
b2
=1(a>b>0)
的離心率為2.若拋物線C2x2=2py(p>0)的焦點到雙曲線C1的漸近線的距離為2,則拋物線C2的方程為
x2=16y
x2=16y

查看答案和解析>>

同步練習冊答案