過(guò)點(diǎn)P(1,2)的直線l分別與x軸,y軸的正半軸交于A,B兩點(diǎn),當(dāng)△AOB(0為坐標(biāo)原點(diǎn))的面積最小時(shí),A、B兩點(diǎn)恰好是曲線R:
x
m
+
y2
n
=1(m>0,n>0)的頂點(diǎn).
(1)求曲線R的方程;
(2)過(guò)點(diǎn)P的直線交曲線R于C、D(異于A、B)兩點(diǎn),求四邊形ACBD面積的最小值.
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專(zhuān)題:計(jì)算題,不等式的解法及應(yīng)用,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:(1)由題意可設(shè)直線l的方程為,
x
a
+
y
b
=1(a>0,b>0),由于直線l過(guò)點(diǎn)(1,2),代入直線方程,利用基本不等式即可得出ab的最小值,取得最小值時(shí)a,b,即可得到A,B的坐標(biāo),進(jìn)而得到曲線R的方程;
(2)討論直線CD的斜率不存在和存在兩種情況,求出CD的弦長(zhǎng),再由面積公式,比較,即可得到最小值.
解答: 解:由題意可設(shè)直線l的方程為
x
a
+
y
b
=1(a>0,b>0),
∵直線l過(guò)點(diǎn)(1,2),
1
a
+
2
b
=1.
∴1=
1
a
+
2
b
≥2
2
ab
,∴ab≥8,當(dāng)且僅當(dāng)
1
a
=
2
b
,即a=2,b=4是取等號(hào).
此時(shí)△AOB的面積取得最小值
1
2
ab=4,
直線l的方程為
x
2
+
y
4
=1.
此時(shí)A(2,0),B(0,4),
由于A、B兩點(diǎn)恰好是曲線R:
x
m
+
y2
n
=1(m>0,n>0)的頂點(diǎn),
即有m=2,n=16,即有曲線R的方程為:
x
2
+
y2
16
=1;
(2)當(dāng)直線CD的斜率不存在時(shí),即方程x=1,代入曲線方程,解得,y=±2
2
,
即有CD=4
2
,A,B到直線CD的距離為1,四邊形ACBD面積為
1
2
×2×4
2
=4
2

當(dāng)k存在時(shí),設(shè)直線CD:y-2=k(x-1),即y=kx+2-k,
代入曲線方程,可得,k2x2+[2k(2-k)+8]x+(2-k)2-16=0,
由于有兩個(gè)交點(diǎn),則判別式△=[2k(2-k)+8]2-4k2[(2-k)2-16]>0,解得,k≠0,
且x1+x2=-
2k(2-k)+8
k2
,x1x2=
(2-k)2-16
k2
,
則四邊形ACBD的面積為
1
2
×2×
|k+2|
1+k2
×
1+k2
×
(
2k(2-k)+8
-k2
)2-
4(2-k)2-64
k2

=4
2
|k+2|
k2+2k+2
k2
>4
2
,
則有四邊形ACBD面積的最小值為4
2
點(diǎn)評(píng):本題考查直線方程的點(diǎn)斜式和截距式的運(yùn)用,基本不等式的運(yùn)用:求最值,考查四邊形的面積的求法,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
m
+y2=1的離心率為 
3
2
,則m的值為(  )
A、4 或 
1
4
B、
1
4
C、16 或 
1
16
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函 數(shù)f(x)=1+log3x的定義域是(1,9],則函數(shù)g(x)=f2(x)+f(x2)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M=(-∞,m],P={y|y=x2-1,x∈R},若M∩P=∅,則實(shí)數(shù)m的取值范圍是  ( 。
A、m≥-1B、m>-1
C、m≤-1D、m<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x<a},B={x|1≤x<2},且A∪(∁UB)=R,則實(shí)數(shù)a的取值范圍是( 。
A、a≤1B、a<1
C、a≥2D、a>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
lnx+k
ex
(其中k∈R),f′(x)為f(x)的導(dǎo)數(shù).
(1)求證:不論k取何值,曲線y=f(x)在點(diǎn)(e,f(e))處的切線不過(guò)點(diǎn)(e+1,0);
(2)若f′(1)=0,證明:對(duì)任意x>0,f′(x)<
e-x+1
x2+x
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x、y為非零的實(shí)數(shù),求
x2+4xy
x2+2y2
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=kx-1(k∈R)和拋物線y2=4x.
(1)若直線l與拋物線有兩個(gè)不同的公共點(diǎn),求k的取值范圍;
(2)當(dāng)k=1時(shí),直線l與拋物線相交于A、B兩點(diǎn),求|AB|的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-sinx(x∈R)的單調(diào)增區(qū)間為(  )
A、[-
π
2
+2kπ,
π
2
+2kπ](k∈Z)
B、[
π
2
+2kπ,
2
+2kπ](k∈Z)
C、[2kπ,π+2kπ](k∈Z)
D、[-π+2kπ,2kπ](k∈Z)

查看答案和解析>>

同步練習(xí)冊(cè)答案