18.函數(shù)y=log2(x2-2x-3)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,-1)∪(3,+∞)B.[-1,3]C.(-∞,-1]∪[3,+∞)D.(-1,3)

分析 根據(jù)函數(shù)成立的條件即可求函數(shù)的定義域.

解答 解:要使函數(shù)有意義,則x2-2x-3>0,即x>3或x<-1,即函數(shù)的定義域?yàn)椋?∞,-1)∪(3,+∞),
故選:A.

點(diǎn)評(píng) 本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見函數(shù)成立的條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={-2,0,2},B={x|x2-x-2=0},則∁A(A∩B)=(  )
A.{-2,0}B.{2,0}C.{-2,-1,0}D.{2,1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直線l:$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù))與圓C:$\left\{\begin{array}{l}x=2+2cosθ\\ y=1+2sinθ\end{array}\right.$(θ為參數(shù))的位置關(guān)系是( 。
A.相離B.相切C.相交且過圓心D.相交但不過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知三梭錐P-ABC中,PA=4,AB=AC=2$\sqrt{3}$,BC=6,PA⊥面ABC,則此三棱錐的外接球的表面積為( 。
A.16πB.32πC.64πD.128π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.給出以下命題:
①命題“若am2<bm2”,則“a<b”的逆命題是真命題;
②命題“p或q”為真命題,則命題p和命題q均為真命題;
③已知x∈R,則“x>1”是“x>2”的充分不必要條件;
④命題“?x∈R,x2-x>0”的否定是:“?x∈R,x2-x≤0”
其中真命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.各項(xiàng)為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:Sn=$\frac{1}{4}$an2+$\frac{1}{2}$an+$\frac{1}{4}$(n∈N*
(Ⅰ)求an
(Ⅱ)設(shè)數(shù)列{$\frac{1}{a_n^2}$}的前n項(xiàng)和為Tn,證明:對(duì)一切正整數(shù)n,都有Tn<$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,在△ABC中,AB=2$\sqrt{5}$,BC=2$\sqrt{10}$,AC=2$\sqrt{13}$,E、F、G分別為三邊中點(diǎn),將△BEF,△AEG,△GCF分別沿EF、EG、GF向上折起,使A、B、C重合,記為S,則三棱錐S-EFG的外接球面積為(  )
A.14πB.15πC.$\frac{29}{2}$πD.2$\sqrt{33}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,若sinA=2sinB,cosC=-$\frac{1}{4}$,則$\frac{a}{c}$=( 。
A.$\sqrt{6}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示是外框?yàn)閳A形的一種圖標(biāo).已知圓的半徑為60mm,A,B,C,D是圓周的四等分點(diǎn),圓內(nèi)框架總長(zhǎng)是360mm,設(shè)計(jì)要求是:矩形EFGH的周長(zhǎng)與面積的比值最小.試問矩形EFGH的長(zhǎng)與寬各是多少mm時(shí)符合設(shè)計(jì)要求.此時(shí)的比值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案