已知橢圓的離心率為,橢圓上任意一點(diǎn)到右焦點(diǎn)的距離的最大值為。

   (I)求橢圓的方程;

   (II)已知點(diǎn)是線段上異于的一個定點(diǎn)(為坐標(biāo)原點(diǎn)),是否存在過點(diǎn)且與軸不垂直的直線與橢圓交于、兩點(diǎn),使得,并說明理由。

解:

   (1)因為, 所以,                 

,橢圓方程為:                 …………4分

   (2)由(1)得,所以,假設(shè)存在滿足題意的直線,設(shè)的方程為,代入,得

設(shè),則  ①,

      …………8分

設(shè)的中點(diǎn)為,則,

當(dāng)時,,即存在這樣的直線

當(dāng)時,不存在,即不存在這樣的直線              …………12分 [來

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的離心率為e,兩焦點(diǎn)分別為F1、F2,拋物線C以F1為頂點(diǎn)、F2為焦點(diǎn),點(diǎn)P為拋物線和橢圓的一個交點(diǎn),若e|PF2|=|PF1|,則e的值為( 。
A、
1
2
B、
2
2
C、
3
3
D、以上均不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的離心率為
1
2
,焦點(diǎn)是(-3,0),(3,0),則橢圓方程為( 。
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知橢圓的離心率為
2
2
,準(zhǔn)線方程為x=±8,求這個橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)你家訂了一份報紙,送報人可能在早上6:30-7:30之間把報紙送到你家,你父親離開家去工作的時間在早上7:00-8:00之間,請你求出父親在離開家前能得到報紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點(diǎn),求e.

查看答案和解析>>

同步練習(xí)冊答案